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ARTICLE INFO ABSTRACT
Keywords: Semi-supervised medical image segmentation faces two challenging issues: (1) insufficient exploration of latent
Semi-supervised learning structures leading to difficulty in comprehensively capturing complex features and structures in medical images;
Medical image segmentation (2) sensitivity to noise, where unlabeled data lacks accurate label information, making the model more prone

Consistency learning

- e to noise interference during the learning process. In this paper, a method, uncertainty-aware consistency
Uncertainty estimation

learning (UAQ), is proposed to improve the poor generalization and suboptimal performance in semi-supervised
medical image segmentation caused by insufficient information exploration and sensitivity to noise. Firstly, by
employing multiple perturbation strategies at both the input and output levels, specifically through data-level
and scale-level perturbations, the model is better equipped to capture structural information within organs
and essential features that impact segmentation performance. Secondly, the perturbation uncertainty leverages
perturbation prediction differences to measure uncertainty helps the model generate reliable predictions and
avoid excessive focus on unreliable areas in the predictions. Experimental results on three public medical image
segmentation datasets demonstrate that our UAC, utilizing multiple perturbation strategies and uncertainty
estimation, exhibits generality across various organ segmentation tasks and achieves accurate segmentation,
with the DICE of 91.15%(LA), 77.52%(Pancreas-CT) and 78.71%(PARSE) under a 10% label ratio setting.
Comparative and ablation studies indicate that our method outperforms state-of-the-art semi-supervised
medical image segmentation methods.

1. Introduction learning and model optimization, leading to underutilization of poten-
tial information. The valuable information embedded in unlabeled data
Image segmentation has achieved outperformed results in many is often overlooked, which may result in the model learning feature

representations that are not comprehensive or accurate enough to
handle segmentation tasks in complex areas (Fig. 1(a)). (2) Sensitivity
to noise. Subjective annotations and noisy outliers lead to potential
missegmentations and can significantly impact the performance of the
segmentation model. As shown in Fig. 1(a), the model is prone to
producing highly uncertain and erroneous segmentations in the organ
adhesion region and some small branches because of the complex

applications, such as disease detection [1,2], lesion segmentation [3,4],
and pathological analysis [5,6]. Especially, the pre-trained fundamental
models, MedSAM [7], MSA [8], are empowered with superpowers in
zero-shot medical segmentation. However, due to the scarce labeled-
data, semi-supervised learning (SSL) has attracted widespread attention
in the field of medical image segmentation. In contrast to supervised

learning algorithms, SSL methods harness a substantial amount of  and intricate nature of these areas. Without constraining these low-

unlabeled data within the medical domain to boost learning efficacy. confidence predictions, the model may overly focus on these noisy areas
Although great advantages have been made in existing methods, it and unreliable predictions during training, leading to the learning of

is still challenging to achieve the medical image segmentation with incorrect knowledge.

small mount labeled data due to (1) Insufficient mining of latent Uncertainty calibration is a potential approach to achieve semi-

information. In SLL, the lack of clear supervision signals in unlabeled supervised image segmentation. By incorporating uncertainty calibra-

data prevents the model from directly relying on labels to guide feature tion into the segmentation process, the model can learn more reliable
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(a)Examples of segmentation prediction visualization
and uncertainty maps obtained from semi-supervised
training using 10% labeled data on the PARSE dataset.
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Fig. 1. (a) Implementing semi-supervised medical image segmentation faces two challenging issues: firstly, insufficient mining of latent information leads to the model struggling
to cope with segmentation in challenging regions. Secondly, sensitivity to noise, that is, using unreliable or incorrect predictions directly for training, leads to subpar model
performance. (b) The proposed UAC leverages perturbation uncertainty to learn reliable knowledge. It is easy to observe the similarity between the difference map of perturbed
predictions and the difference map between perturbed predictions and labels. Regions with large differences in perturbed predictions have higher uncertainty, making it easier to

generate incorrect predictions.
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Fig. 2. The proposed UAC introduces a multi-level disturbance strategy for multi-scale consistency learning, enhancing the model’s generalization ability. To prevent the model
from focusing excessively on noisy regions and to learn more reliable knowledge, disturbance uncertainty estimation is introduced. By calculating the uncertainty map based on
the degree of change between predictions before and after disturbance, the consistency learning is corrected.

information in unsupervised scenarios, thereby reducing the impact of
noise interference. Generally, uncertainty estimation employs ensemble
methods [9] or Monte Carlo sampling [10,11] to calculate model pre-
diction confidence, and unreliable predictions are filtered out by setting
thresholds to avoid the model focusing excessively on noisy regions
and areas with high uncertainty. However, most of these methods are
based on the assumption that higher entropy corresponds to higher
uncertainty, making it difficult to capture the model’s true uncertainty
when the model is overly confident and the data distribution is uneven.
Moreover, unreliable predictions often occur in regions with complex
structures and blurry boundaries. Directly filtering out these unreliable
predictions can result in the loss of information in these challenging
areas.

In this paper, a novel consistency-based training strategy, Unce-
rtainty-Aware Consistency learning (UAC, Fig. 2) is proposed to achieve
semi-supervised medical image segmentation with few labeled images.
As shown in Fig. 1(b), the predictions of model exhibit robustness
in easily identifiable regions before and after perturbation, whereas
in challenging regions, due to the complexity and ambiguity of the
data, the model’s predictions become unstable. There is a significant
difference in prediction probabilities before and after perturbation in
these difficult areas. By leveraging this characteristic, uncertainty can
be estimated in a single forward pass, enabling dynamic adjustment of
multi-level consistency. The proposed UAC is composed of three com-
ponents: (1) Multi-perturbation strategy has been designed to enhance
the model’s generalization ability by perturbing data at both the data
level and scale level simultaneously; (2) Disturbance uncertainty has
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been introduced to guide output consistency by estimating uncertainty
through calculating the difference in predictions before and after per-
turbation in a single forward pass. The corrected network focuses more
on reliable prediction information, reducing the impact of noise; (3)
Voxel contrastive learning has been introduced into the feature space
to provide explicit supervision, further enhancing the separability of
features, enabling the model to better distinguish features between
different categories.

Overall, our proposed framework has three practical contributions:

» A novel consistency-based training strategy is proposed to achieve
semi-supervised medical image segmentation with the unce-
rtainty-calibrated multi-level consistency learning. The proposed
method restricts consistency learning by computing model predic-
tion uncertainty within a single forward pass to prevent the model
from excessively focusing on high-risk areas during training and
learning incorrect knowledge.

A multi-level consistency learning method combining data-level
and scale-level consistency is proposed to leverage unlabeled data
for improving the generalization of SSL models.

Extensive experiments are conducted on three publicly avail-
able benchmark datasets using different label ratios and com-
pared with existing state of the art (SOTA). Experimental re-
sults show that our proposed method improves the segmentation
performance and is superior to the SOTA.

2. Related work
2.1. Semi-supervised medical image segmentation

The emergence of SSL in medical image segmentation has increas-
ingly captivated researchers, offering a solution to the data scarcity
challenge prevalent in fully supervised methods. The SSL method can
be roughly divided into two categories: (1) Pseudo-label learning [12],
which uses unlabeled images to generate labels to guide model learn-
ing. However, the predictions of unlabeled data may contain noise,
and directly using these pseudo-labels for training can lead to noise
accumulation in the model. Selecting reliable predictions based on
confidence [13,14] or generating soft pseudo-labels [15] to some extent
alleviates this issue. (2) Consistency regularization [16-18] revolves
around the core concept of obtaining outputs that remain invariant
to perturbations. By bolstering the consistency of predictions across
diverse viewpoints or multiple iterations, this approach diminishes the
model’s dependency on individual predictions and alleviates the pitfalls
linked to overly confident pseudo-labels. Within the realm of consis-
tency learning, the introduction of various perturbations, including
data-level perturbations [19,20] and model-level perturbations [21,22],
facilitates the acquisition of more resilient and broadly applicable
feature representations by the model.

2.2. Uncertainty estimation

Uncertainty estimation is an important research direction in the
fields of machine learning and deep learning. Its goal is to provide reli-
able assessments of model predictions and support model selection and
ensemble methods. By estimating the uncertainty of model predictions,
confidence information about the prediction results can be obtained,
which helps us better understand the behavior and performance of
the model. In the field of semi-supervised learning, Yu et al. [10]
and Zhang et al. [11] estimated the predictive entropy of each target
prediction as uncertainty using Monte Carlo sampling, filtering out
unreliable predictions. While reducing the model’s incorrect decisions,
this may also lead to the loss of some important information. Methods
using Bayesian neural networks [23] and Monte Carlo sampling [24] to
estimate model uncertainty often require multiple forward passes and
sampling, increasing computational complexity. Wu et al. [25] obtain

Knowledge-Based Systems 309 (2025) 112890

the uncertainty of pseudo-labels by replicating the prediction head of
the pre-trained model multiple times. Luo et al. [26] and Shi et al. [27]
estimated uncertainty by calculating the variance between multi-views
predictions. Building upon the above methods, we have improved the
estimation method of model uncertainty. Cross-view and cross-scale
uncertainty estimation have been introduced to guide consistency and
minimize uncertainty as a regularization term to reduce prediction
variance during training.

2.3. Contrastive learning

Contrastive Learning (CL) [28] is a crucial technique in unsu-
pervised learning that has achieved state-of-the-art performance by
leveraging abundant unlabeled data. The core idea of CL is to learn
effective representations by comparing the similarity and dissimilar-
ity between different parts of the data, essentially pulling similar
pairs closer and pushing dissimilar pairs apart. The primary difference
between CL-based frameworks lies in the strategies used to obtain pos-
itive and negative sample augmentations, such as utilizing momentum-
updated memory banks to provide negative samples [29] and using
other augmented samples within a batch as negative samples [30].
Dong et al. [31] believe that when selecting positive and negative sam-
ples, one should exclude samples that are erroneous or lack sufficient
information. PC2Seg [32] and RCPS [33] transitions from image-level
contrastive learning to dense voxel-level contrastive learning tasks
and introduces a confidence negative sampling strategy. Drawing in-
spiration from the above, to further enhance model performance, a
confidence negative sampling strategy is introduced in the feature space
to improve the discriminative features of pixels.

3. Methodology

The proposed UAC framework (Fig. 3) conducts semi-supervised
medical image segmentation with limited labeled-data by leveraging
consistency learning. The UAC learns the consistent predictions to
improve the segmentation generalization by introducing the multi-
level perturbations. Specifically, the proposed UAC consists of three
parts: (1) Multi-perturbation strategies explore the perturbation space
by introducing various perturbations, uncovering latent information in
unlabeled data to help the model learn more robust feature represen-
tations; (2) Perturbation uncertainty involves measuring perturbation
prediction differences to estimate uncertainty in a single forward pass,
which is then used to constrain consistency learning, preventing the
model from overly focusing on noisy regions; (3) Voxel contrastive
learning involves pulling similar class features closer together in feature
space and pushing features from different classes further apart, further
enhancing class separability and learning more discriminative features.

3.1. Multi-perturbation strategy for latent structure

The multi-perturbation strategies are designed to help the consis-
tency learning model better understand the subtle structures within
organs. Multiple perturbation strategies aim to introduce different types
of perturbations, explore the feature space of data more comprehen-
sively during training, uncover important information that influences
segmentation performance in the medical image, help the model gen-
eralize better to new samples, and improve its performance and robust-
ness.

When using perturbations, there is a balance issue with perturbation
intensity. If the perturbation is too weak, the model may become overly
reliant on initial predictions or local details, failing to fully leverage the
latent information in unlabeled data. Conversely, if the perturbation
is too strong, it may disrupt the structure and semantic information
of the images, preventing the model from accurately learning effective
features and patterns. To fully utilize the latent information in the data
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Fig. 3. The proposed UAC consists of three parts: (1) Multi-perturbation strategy is used to explore latent information contained in the data, aiding the model in learning more
robust representations. (2) Disturbance uncertainty calibration helps the model prioritize learning reliable knowledge during the learning process by assigning different levels

of attention to regions with varying degrees of reliability, thereby avoiding excessive focus on noisy areas. (3) Voxel contrastive loss provides explicit supervision for features,

enhancing the separability between features of different classes.

while avoiding the instability and confusion caused by excessive pertur-
bation, finding the right balance is crucial. Fixmatch [16] achieves im-
age classification performance comparable to state-of-the-art methods
by employing a simple strong-weak consistency framework. Inspired
by this, the strong-weak consistency learning framework has been
introduced into medical image segmentation tasks.

As shown in Fig. 3, in the input space, weak augmentations like
random brightness transformations and random noise and strong aug-
mentations such as random cropping and color jittering are applied to
the input image x, to obtain augmented views xg and xy,. Considering
that common structures in medical images often exist at multiple scales,
a pyramid structure is introduced in the decoder to generate multi-scale
predictions, denoted as p.. This helps the model capture structures and
details at different levels in medical images. In this segmentation tasks,
where ¢ = {0,1,2,3}, larger ¢ values correspond to higher resolution
output results. The multi-scale predictions are up-sampled to obtain
outputs of the same size for alignment and comparison.

3.2. Perturbation uncertainty for consistency learning

The perturbation uncertainty is adopted to measure prediction con-
fidence for preventing the model from excessively focusing on noisy ar-
eas during the training process. The difference between the multi-scale
output predictions of perturbed images and the original predictions is
calculated to represent the prediction uncertainty map. The prediction
uncertainty map is used both to ensure the model generates reliable
predictions and to dynamically adjust consistency learning to prevent
the model from overly focusing on unreliable areas in the predictions.
Over-focusing on unreliable areas in the predictions may lead to two
potential issues: one is the risk of the model learning incorrect organ
structure features, impacting segmentation performance, and the other
is the potential for the model to overlook or confuse genuine organ
structure features, resulting in the loss of crucial information in the
predictions. The UAC framework includes the original data stream and
the perturbed data stream. For the probability map p of the original
input image, it is sharpened to obtain p [34]:
T

P+ (L= pI/T W

p=

Here, T is a hyperparameter that controls the degree of sharpening.
It is worth noting that as T decreases, prediction results with low en-
tropy constraint are obtained. However, if T is set too low, it may lead
to overconfident predictions, ignoring the model’s uncertainty. Choos-
ing an appropriate T can help us achieve better segmentation results.
Directly conducting multi-scale consistency learning may introduce
unnecessary noise or errors. Therefore, the difference of predicted prob-
ability before and after perturbation is utilized to estimate uncertainty
maps in a single forward pass:

pe ot @
U, (p,.p) = og (2) + 10g(2)) ®)

by p

Here, U, denotes the difference map between the perturbed out-
put and the original output. A significant difference indicates higher
uncertainty in the model’s predictions, suggesting a higher likelihood
of learning erroneous knowledge. Inspired by the [35], to prevent the
model from focusing excessively on noisy regions and incorrect infor-
mation, the estimated uncertainty maps are use to guide the learning
process:

lee =Y Lpl)) + Z U, (p.p) )

7 exp (U, (pr,

In Eq. (4), the first term represents the corrected consistency loss ob-
tained even after dynamic adjustment for uncertainty, while the second
term calculates the overall uncertainty and uses it as a regularization
term. By introducing additional penalty terms, the model is prevented
from consistently generating predictions with high uncertainty.

3.3. Voxel contrastive learning for feature discrimination

To further learn a structured feature space, aiding the model in cap-
turing finer-grained feature representations to handle complex struc-
tures and ambiguous boundaries. The voxel-level contrastive loss [32]
is introduced to provide explicit supervision for features, by bringing
similar samples closer together in the feature space and push samples
from different classes farther apart, thereby improving the accuracy
and robustness of segmentation. Specifically, a projection head is in-
troduced at the second up-sampling block of the decoder to generate
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feature representations. Two augmented views are considered as pos-
itive samples, while other samples in the dataset serve as negative
samples. By maximizing the similarity between positive sample pairs
and minimizing the similarity between negative sample pairs in the
feature space, it encourages similar samples to have closer feature
representations and dissimilar samples to have more dispersed feature
representations. The feature pair contrastive loss function is defined as:
exp ( sim(ri. rw) )
lfc = lOg sim(rSA rW) sim(r r’) (5)
exp(—') + XA exp(+)

T

where rg, ry, and r~ represent the feature representations of strong
and weak augmented views, as well as negative samples. Additionally,
sim(-) denotes the similarity between two feature maps and A~ is the
set of negative sample images. In this paper, cosine distance is used as
a metric to measure the similarity between two feature representations.
Furthermore, unlabeled images are utilized as negative samples for la-
beled images, with a buffer used to store dynamically updated negative
samples for computing the contrastive loss.

For pixel-level contrastive learning tasks, positive samples are the
corresponding pixels in strong and weak augmented views. However,
selecting negative samples following the methods used in image-level
contrastive learning may lead to resource constraints. Additionally,
semi-supervised segmentation tasks are sensitive to noise, where mis-
classifying a negative sample can lead to ineffective learning or even
misguide the model’s learning direction. Therefore, a confident nega-
tive sampling strategy is employed. Initially, to prevent the selection
of pixels belonging to the same class as the positive samples in the
negative sample images, a difference matrix is constructed using the
segmentation results to select negative pixels. Subsequently, the top K
pixels with the highest confidence are sampled from the negative pixels.

3.4. Overall training loss

The UAC is a universal semi-supervised framework where super-
vised loss and consistency loss are employed in a unified framework for
learning from labeled and unlabeled data, and it combines uncertainty-
guided multi-perturbation consistency learning with voxel contrastive
learning. Specifically, in semi-supervised learning image segmentation,
we assume that the dataset used contains only a small amount of
labeled data and a lot of unlabeled data, where D, = {x/,y' }IZLI
represents the labeled data set, D;; = {x"}Z’V:U1 represents the unlabeled
data set, and N; < Ny. For annotated data, the supervised loss
function is directly computed:

Lap@' ¥ = 1 g (3, 3) + Lpice(y. 31) ©)

where [/ represents the calculation of the cross-entropy loss function,
and /., represents the calculation of the dice loss function. Then, inte-
grating multi-level uncertainty calibration and voxel-level contrastive
learning into the proposed framework for unsupervised learning, the
overall loss function is given by :

ltotal = lsup(xl’ yl) ta- lcrc(xl;xu) +8- lfc(xl; x*) @

where I, 1., and I;. are the corrected consistency loss defined in
Section 3.2 and the pixel-level contrastive loss defined in Section 3.3,
respectively. « and p are hyperparameters that balance the loss, and
their specific values depend on the specific task.

4. Experiments

To validate the superior performance of the UAC framework in
medical image segmentation tasks, experiments were conducted, and
the accuracy of segmentation predictions is evaluated on three different
public medical datasets. The results are compared with the current
state-of-the-art methods.
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4.1. Dataset and pre-processing

The LA dataset. The LA benchmark dataset [36] is from the
2018 Left Atrial Segmentation Challenge, which contains 154 3D late
gadolinium-enhanced magnetic resonance imaging scans (LGE-MRIs)
of 60 patients, with spatial dimensions of either 576 x 576 x 88 or
640 x 640 x 88 pixels. Since the annotation of the test set is not publicly
available, following the experimental setting in [10,17,21,33,37], the
100 scans of the training set are divided into 80 scans for training and
20 scans for testing. Before training, the intensity is first normalized to
zero mean and unit variance, and then the region of interest (ROI) is
cropped based on the label, with an enlarged boundary of 25 pixels.
All the training volumes are randomly cropped to get a patch of
112 x 112 x 80 pixels, because of limited computing resources.

The Pancreas-CT Dataset. The Pancreas-CT dataset [38] is from
the National Institutes of Health Clinical Center, which contains 82
3D abdominal contrast-enhanced CT scan of 80 patients, of which 53
are males and 27 are females. The CT scans, which have a resolution
of 512 x 512 pixels, with different pixel sizes and slice thicknesses
between 1.5 and 2.5 mm, were acquired by Philips and Siemens MDCT
scanners. According to the experimental setting in [17,21,33], the
dataset is randomly split into 20 testing cases and 62 training cases.
Following the pre-processing in [17,33], the voxel values are clipped to
the range of [-125, 275] Hounsfield Units (HU) and further re-sampled
to an isotropic resolution of 1 x 1 x 1 mm? firstly. Then the intensity is
normalized to zero mean and unit variance, and crop out the region
of interest (ROI) based on the label, with enlarged boundary of 25
pixels. All the training volumes are randomly cropped to get a patch
of 96 x 96 x 96 pixels, because of limited computing resources.

The PARSE Dataset. The PARESE dataset [39] is from the 2022
Pulmonary Artery Segmentation challenge, which contains a computed
tomography pulmonary angiography (CTPA) image set of 203 subjects
diagnosed with pulmonary nodular disease, obtained from four differ-
ent centers. The plane dimensions of the dataset are 512 x 512 pixels,
and the number of slices ranges from 228 to 408. The data were divided
into three parts, in which the number of training set, validation set, and
test set is 100, 30, and 73 respectively, and the only annotated data we
can publicly obtain is 100 samples of the training set, so in the training
process, it is empirically divided into two parts, of which 80 samples
are used as the training set and 20 samples are used as the validation
set. For the pre-processing, the volumes are normalized, and the ROI is
cropped. And the input of the model is set as a patch of 96 x 96 x 96
pixels.

4.2. Experimental settings

In this study, our experiment is conducted in PyTorch 1.11.0 on an
NVIDIA 3090 GPU with fixed random seeds. For data augmentation,
weak augmentation (i.e., random intensity augmentation and random
noise) and strong augmentation (i.e., cutout) are used. Our model is
trained via an SGD optimizer with a momentum of 0.9 and weight
decay of 10-4, while the initial learning rate is set to 0.01 and decay
with polynomial strategy slowly. The backbone is set as 3D U-Net. The
batch size is set as 1, containing two labeled patches and two unlabeled
patches. Our model is trained for 200 epochs on LA, 400 epochs on
Pancreas-CT and 400 epochs on PARSE respectively. During training,
we set f§ = 0.1, a = 0.1 for LA, p = 0.1, « = 0.2 for pancreas-CT, f =
0.1, « = 0.1 for PARSE. Across three datasets with different label data
ratios, the network was trained using the setting T=0.1. This setting
was discussed in the ablation experiments in Section 5.3. In the testing
stage, three metrics are adopted to evaluate the segmentation per-
formance: Dice similarity coefficients (DSC), 95% Hausdorff Distance
(95HD), and Average Symmetric Surface Distance (ASD). Additionally,
to gain a better understanding of the trade-offs between performance
improvements and computational costs, two metrics, Param and FLOPs,
have been introduced to quantify the model’s parameter quantity and
computational load.



M. Dong et al

Knowledge-Based Systems 309 (2025) 112890

Table 1
The proposed UAC achieves highly accurate organ segmentation performance on three challenging datasets under different semi-supervised
settings.
Dataset Scans used Metrics Complexity
Labeled Unlabeled Dice(%)t HD95(voxel)| ASD(voxel)| Param(M) FLOPs(G)
LA 8(10%) 72(90%) 91.15 5.27 1.68 6.005 71.530
Pancreas-CT 6(10%) 56(90%) 77.52 13.28 2.72 6.005 63.063
PARSE 8(10%) 72(90%) 78.71 11.12 2.10 6.005 63.063
LA 16(20%) 64(80%) 91.92 4.89 1.55 6.005 71.530
Pancreas-CT 12(20%) 50(80%) 80.92 6.22 1.82 6.005 63.063
PARSE 16(20%) 64(80%) 82.90 7.32 1.42 6.005 63.063
Table 2

Experimental results show that the UAC obtains
indicate the best result.

a competitive performance compared with the SOTA method on the LA dataset. The bold

Method Scans used Metrics Complexity
Labeled Unlabeled Dice(%)t HDO95(voxel)| ASD(voxel)| Param(M) FLOPs(G)

UA-MT [10] 8(10%) 72(90%) 86.28 18.71 4.63 9.449 47.182
SASSNet [37] 85.22 11.18 2.89 9.443 46.884
DTC [17] 87.51 8.23 2.36 9.449 47.182
URPC [26] 85.01 15.37 3.96 5.885 69.360
MC-Net+ [21] 88.96 7.93 1.86 9.449 47.182
RCPS [33] 90.73 7.91 2.05 6.004 71.520
Proposed method 91.15 5.27 1.68 6.005 71.530
UA-MT [10] 16(20%) 64(80%) 88.74 8.39 2.32 9.449 47.182
SASSNet [37] 89.16 8.95 2.26 9.443 46.884
DTC [17] 89.52 7.07 1.96 9.449 47.182
URPC [26] 88.74 12.73 3.66 5.885 69.360
MC-Net+ [21] 91.07 5.84 1.67 9.449 47.182
RCPS [33] 91.21 6.54 1.81 6.004 71.520
Proposed method 91.92 4.89 1.55 6.005 71.530

5. Results and analysis

The proposed UAC framework has demonstrated excellent perfor-
mance in the field of medical image segmentation, achieving high-
precision segmentation results. The effectiveness of this framework
in semi-supervised segmentation models has been validated in three
aspects: (1) Performance of the UAC is examined on three different
medical image datasets, LA, Pancreas-CT, and PARSE, confirming the
universality of the UAC framework in semi-supervised medical image
segmentation. (2) A comparison with existing methods has revealed
the advantages of the proposed UAC framework in medical image seg-
mentation. (3) Ablation study is conducted on the various components
of the UAC framework to demonstrate the roles and contributions of
different modules.

5.1. Overall segmentation performance

The experiments in Table 1 demonstrate that UAC can achieve
accurate segmentation on three medical image datasets, proving the
versatility of the UAC framework. Specifically, on the LA dataset with
a 10% label data ratio, UAC achieved the best performance across
all evaluation metrics, with 91.15% of Dice, 5.27 voxel of HD95,
and 1.68 voxel of ASD. As the label data increased to 20%, there
is a slight improvement in all evaluation metrics, with Dice only
increasing by 0.77%. These results indicate that UAC effectively mines
latent information from unlabeled data and enhances the segmentation
performance of model through uncertainty-guided consistency learn-
ing and pixel-level contrastive learning. It is worth noting that the
structures of the pancreas and pulmonary artery are typically more
intricate than those of the heart, rendering segmentation tasks on the
Pancreas-CT and PARSE datasets more demanding in comparison to the
LA dataset. Nevertheless, UAC demonstrated outstanding segmentation
performance on these two datasets. Under a 10% label data ratio on
the Pancreas-CT and PARSE dataset, UAC achieved 77.52% of Dice,
13.28 voxel of HD95, 2.72 voxel of ASD and 78.71% of Dice, 11.12
voxel of HD95, 2.10 voxel of ASD, respectively. When the label ratio is

increased to 20%, there is a respective increase of 3.40% and 4.19% in
Dice scores. Compared to the LA dataset, the performance improvement
was more significant, likely due to the more challenging nature of the
segmentation tasks for the pancreas and pulmonary artery compared
to the heart. Additionally, by calculating the Param and FLOPs of the
model during testing, it was found that the proposed model has a pa-
rameter quantity of only 6.005M. The computational load is dependent
on the input size, when we input a 112 x 112 x 112 3D cardiac image,
the FLOPs amount to 71.530G.

5.2. Comparison with SOTA

Extensive experiments are conducted on three publicly available
datasets demonstrate the segmentation accuracy of UAC including the
LA dataset, Pancreas-CT dataset and PARSE dataset. The proposed
method is compared with several existing methods, among which
SASS [37], DTC [17] introduce task-level regularization for cross-
task consistency learning, UA-MT [10], URPC [26], MC-Net+ [21]
use output uncertainty to correct predictions, and RCPS [33] uses
kl divergence to correct pseudo-labels. Experiments show that the
proposed model has a certain improvement on the segmentation results
compared with these state of the art.

Comparison on LA Dataset. The proposed UAC achieved the best
results compared to state-of-the-art methods on the LA dataset with
two different label data ratios, in terms of three evaluation metrics:
Dice, HD95, and ASD. It is observed that varying degrees of improve-
ment compared to the other methods in Table 2. Notably, the UAC
incorporates a cross-sample consistency constraint and a cross-scale
consistency constraint, which enables the network to capture boundary
regions and voxel semantic changes more effectively. As a result,
accurate organ contour is achieved without the need for shape con-
sistency constraints during the training process, distinguishing us from
methods such as SASS [37] and DTC [10]. Additionally, by leveraging
uncertainty to constrain consistency, the issue of noise accumulation
associated with unsupervised learning is mitigated. This allows us to
extract valuable information from the unlabeled data, even when only
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UA-MT

Label 20% Label 10%

Fig. 4. 2D visualization of our method and comparison method at 10% labeled data and 20% labeled data of LA dataset. The blue line represents the prediction result and the
green line represents the true label.
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Fig. 5. 3D visualization of our method and comparison method at 10% labeled data and 20% labeled data of LA dataset, the last column is the real label.

a small number of labeled samples are available. In the scenarios with
only 10% and 20% labeled data, the UAC achieves Dice values of
91.15% and 91.92%, respectively. Furthermore, compared to other
methods, UAC does not introduce excessive inference costs.

It becomes evident that our method produces a more comprehensive
left atrial segmentation compared to other methods, closely resem-
bling the ground truth label. The segmentation results obtained by
our method exhibit a higher level of accuracy and conformity to the
anatomical structure of the left atrium. To visually showcase the seg-
mentation progress of our method and recent semi-supervised medical
image segmentation methods, two cases are chosen from the test set to
illustrate the segmentation results. In Figs. 4 and 5, the 2D visualization
and 3D visualization analyses of the segmentation outcomes on the LA
dataset are presented using our method and the comparative method,
respectively. Fig. 4 showcases the boundary delineation and internal
details of the left atrium. Compared to other methods, the segmentation
results of UAC are more accurate at the edges and junctions. Fig. 5 pro-
vides a three-dimensional representation of the segmented left atrium,
allowing for a more comprehensive evaluation. The UAC achieves a
more complete and precise segmentation, capturing the intricate shape
and structure of the left atrium.

Comparison on Pancreas-CT Dataset. At a label data ratio of 10%
on the Pancreas-CT dataset, UAC achieved the best performance in
terms of Dice and HD95, while at a label data ratio of 20%, it achieved
the best result in the HD95 metric. As shown in Table 3, compared
to other existing state-of-the-art semi-supervised medical image seg-
mentation algorithms, UAC shows varying degrees of improvement in
different metrics. It is worth noting that UAC achieves good results even
with a label ratio of 10%, indicating that UAC can make better use of
the information extracted from unlabeled data. Additionally, in the case
of a 20% label ratio, although the segmentation Dice and ASD values of
UAC are slightly lower than the best-performing method, HD95 value
is still improved, indicating that UAC can achieve more accurate organ
contours while maintaining good segmentation accuracy.

To further illustrate the segmentation performance achieved by
UAC, two cases are selected from the test set for visualization. Fig. 6
showcases the 2D visualization of the segmentation results. It demon-
strates the boundary delineation and internal details of the pancreas,

revealing that the segmentation results of UAC have smoother bound-
aries and shapes that are closer to the ground truth. While RCPS [33]
achieves high-precision segmentation, its boundaries and shapes are
not as accurate. On the other hand, SASS [37] can produce accurate
boundaries, but there are some outliers and significant deviations in
its segmentation results, which affect the segmentation performance.
Fig. 7 showcases the 3D visualization analysis of the segmentation
results. It provides a three-dimensional representation of the segmented
pancreas, revealing that UAC captures the complex shape and structure
of the pancreas, closely resembling the ground truth label.

Comparison on PARSE Dataset. UAC achieved the best results
compared to state-of-the-art methods on the PARSE dataset with two
different label data ratios, except for a slightly lower Dice compared to
the best result at a 10% label data ratio setting. Table 4 presents the
segmentation results of our proposed method and six other state-of-the-
art methods on the PARSE dataset. Specifically, at a label data ratio of
20%, UAC achieved the best performance with a Dice of 82.90%, HD95
of 7.32 voxel, and ASD of 1.42 voxel. To further illustrate the segmenta-
tion performance achieved by our method, two cases are selected from
the test set for visualization. In Fig. 8, the 3D visualization analysis
results of the segmentation using our method and the comparative
methods on the PARSE dataset are presented. It can be observed that
our method generates fewer false positive results compared to the other
methods.

5.3. Ablation study

The ablation experiments in Table 5 have demonstrated the ef-
fectiveness of each component in UAC. Disturbance uncertainty cali-
bration and voxel contrastive learning were experimented with using
10% labeled data on the LA, Pancreas-CT, and PARSE datasets, respec-
tively. The experimental results indicate that each module improves
the model’s performance compared to the baseline. Moreover, the
perturbation uncertainty has a more significant impact on enhancing
model performance compared to voxel contrastive learning. When
both modules are used simultaneously, the model achieves the best
performance.
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Experimental results show that the UAC obtains a competitive performance compared with the SOTA method on the Pancreas-CT dataset. The

bold indicate the best result.

Method Scans used Metrics Complexity
Labeled Unlabeled Dice(%)t HD95(voxel)| ASD(voxel)| Param(M) FLOPs(G)
UA-MT [10] 6(10%) 56(90%) 66.44 17.04 3.03 9.449 41.597
SASSNet [37] 68.97 18.83 1.96 9.443 41.334
DTC [17] 66.58 15.46 4.16 9.449 41.597
URPC [26] 73.53 22.57 7.85 5.885 61.150
MC-Net+ [21] 70.00 16.03 3.87 9.449 41.597
RCPS [33] 76.62 16.32 3.01 6.004 63.054
Proposed method 77.52 13.28 2.72 6.005 63.063
UA-MT [10] 12(20%) 50(80%) 76.10 10.84 2.43 9.449 41.597
SASSNet [37] 76.39 11.06 1.42 9.443 41.334
DTC [17] 76.27 8.70 2.20 9.449 41.597
URPC [26] 80.02 8.51 1.98 5.885 61.150
MC-Net+ [21] 79.37 8.52 1.72 9.449 41.597
RCPS [33] 81.59 7.50 2.03 6.004 63.054
Proposed method 80.92 6.22 1.82 6.005 63.063
UA-MT SASS DTC URPC MC Net+ RCPS Ours

Label 20% Label 10%

Fig. 6. 2D visualization of our method and comparison method at 10% labeled data and 20% labeled data of Pancreas-CT dataset. The blue line represents the prediction result

and the green line represents the true label.

UA_MT

Label 20% Label 10%

Fig. 7. 3D visualization of our method and comparison method at 10% labeled data and 20% labeled data of Pancreas-CT dataset, the last column is the real label.

Table 4
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Experimental results show that the UAC obtains a competitive performance compared with the SOTA method on the PARSE dataset. The bold

indicate the best result.

Method Scans used Metrics Complexity
Labeled Unlabeled Dice(%)1 HD95(voxel)| ASD(voxel)| Param(M) FLOPs(G)

UA-MT [10] 8(10%) 72(90%) 61.84 16.04 6.24 9.449 41.597
SASSNet [37] 69.91 13.77 5.18 9.443 41.334
DTC [17] 59.20 47.04 2.59 9.449 41.597
URPC [26] 77.19 9.94 2.47 5.885 61.150
MC-Net+ [21] 77.57 11.38 2.38 9.449 41.597
RCPS [33] 78.90 11.48 2.27 6.004 63.054
Proposed method 78.71 11.12 2.10 6.005 63.063
UA-MT [10] 16(20%) 64(80%) 62.97 15.21 6.16 9.449 41.597
SASSNet [37] 70.57 12.98 4.38 9.443 41.334
DTC [17] 66.34 21.88 3.83 9.449 41.597
URPC [26] 80.37 9.26 2.19 5.885 61.150
MC-Net+ [21] 80.31 9.78 2.55 9.449 41.597
RCPS [33] 82.53 8.10 1.50 6.004 63.054
Proposed method 82.90 7.32 1.42 6.005 63.063

To illustrate the necessity of using multi-level perturbations, exper-
iments are conducted separately for single-level perturbation uncer-
tainty and multi-level perturbation uncertainty. As shown in Table 6,

using a multi-level perturbation strategy on different datasets led to
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MC Net+  RCPS

label

Ours

Fig. 8. 3D visualization of our method and comparison method at 10% labeled data and 20% labeled data of PARSE dataset, the last column is the real label.

Table 5

The UAC segmentation performance on different datasets with different methods. Here, PU and VCL respectively represent perturbation

uncertainty, voxel contrastive learning.

Dataset Method Scans used Metrics
Labeled Unlabeled Dice(%)1 HD95(voxel)| ASD(voxel)|
LA Baseline 8(10%) 72(90%) 74.01 24.42 7.24
Baseline + VCL 83.49 10.45 2.52
Baseline + PU 91.01 5.38 1.66
Baseline + PU + VCL 91.15 5.27 1.68
Pancreas-CT Baseline 6(10%) 56(90%) 55.45 23.87 7.21
Baseline + VCL 68.82 26.01 4.74
Baseline + PU 72.82 20.01 4.05
Baseline + PU + VCL 77.52 13.28 2.72
PARSE Baseline 8(10%) 72(90%) 48.74 19.51 5.08
Baseline + VCL 71.92 17.61 4.09
Baseline + PU 72.42 12.89 2.94
Baseline + PU + VCL 78.71 11.12 2.10

Black and bold indicate the best result.

Table 6

The UAC segmentation performance on different datasets with different perturbation strategies. Here, MPU and SPU respectively represent

multi-level perturbation uncertainty, single-level perturbation uncertainty.

Dataset Method Scans used Metrics
Labeled Unlabeled Dice(%)1 HD95(voxel)| ASD(voxel)|
LA Baseline + SPU 8(10%) 72(90%) 89.75 10.45 4.05
Baseline + MPU 91.01 5.38 1.66
Pancreas-CT Baseline + SPU 6(10%) 56(90%) 69.53 32.48 5.34
Baseline + MPU 72.82 20.01 4.05
PARSE Baseline + SPU 8(10%) 72(90%) 72.18 13.12 2.98
Baseline + MPU 72.42 12.89 2.94
Black and bold indicate the best result.
varying degrees of performance improvement for the model. Intro- 93 :
ducing diverse perturbations can encourage the model to learn more T 110% Labeled
robust and general feature representations, thereby reducing the risk 925 E——120% Labeled |
of overfitting. . . ol o184 91.92 |
In order to illustrate the effect of the sharpening degree of the — 9156
original prediction on the performance in the model, different sizes of 915k — 91.37 -
T are selected for ablation experiments. The results shown in Fig. 9 91.15) ]
indicate that choosing an appropriate temperature parameter when o or 1
generating soft pseudo-labels for training can improve the performance § 05| 90.45 90.62 |
of the model. A higher temperature parameter makes the probability 2
distribution of the model smoother, with probabilities of different 90 89.83 1
classes being closer to each other. However, this may result in blurred
boundaries and loss of details. On the other hand, a lower temperature 8951 i
parameter sharpens the probability distribution, emphasizing classes 89 L J
with higher confidence. This helps highlight the edges and details. If
the temperature parameter is set too low, it may lead to overconfident 88.5 1
predictions, disregarding the model’s uncertainty. .

5.4. Limitations and future work

Although our semi-supervised model has demonstrated excellent
performance in segmenting images of multiple organs, our current

0.01 0.1 0.5 1.0
The value of T

Fig. 9. Segmentation results on the LA dataset with different T settings. The model
achieves the best segmentation performance when T=0.1.
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discussions have been focused on single-domain datasets. In the con-
text of semi-supervised settings in the text, both labeled and unla-
beled data come from the same domain. However, in real life, the
datasets we acquire may originate from multiple medical centers, lead-
ing to domain discrepancies and inconsistencies in annotations between
different centers. In our future work, we aim to further investigate
how semi-supervised methods perform when there are domain differ-
ences between labeled and unlabeled data, and integrate cross-domain
learning and domain adaptation techniques to enhance the model’s
generalization capabilities.

6. Conclusion

In this paper, UAC is propose to address the issues of noise sen-
sitivity and insufficient information in semi-supervised medical image
segmentation. The proposed UAC aims to better utilize the information
contained in unlabeled data through consistency learning by explor-
ing a larger perturbation space. A multi-level perturbation strategy is
introduce to enhance model generalization and address the issue of
low prediction confidence in challenging areas by proposing distur-
bance uncertainty estimation. This dynamically adjusts the constraints
on consistency to prevent the model from overly focusing on noisy
regions. Experimental results on three public datasets demonstrate that
our method exhibits excellent segmentation performance compared to
state-of-the-art semi-supervised medical image segmentation methods.
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