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Abstract—Class Incremental Learning (CIL) aims to enable
models to continuously learn new categories while retaining
previous classification abilities. In medical scenarios, where
new disease categories frequently emerge, CIL becomes crucial.
Traditional CIL approaches often face “catastrophic forgetting”.
Analytical Class Incremental Learning (ACIL) offers an ana-
lytical (i.e., closed-form) linear solution that does not depend
on conventional replay or regularization techniques, thereby
mitigating forgetting and addressing privacy concerns, making it
suitable for medical datasets. However, few studies have explored
the problem of knowledge forgetting in CIL for medical data with
ACIL. Based on the latest research, we systematically study this
problem for the first time. Specifically, we present a benchmark
named AIDC (Analytical Incremental Disease Classification),
comparing ACIL against five established CIL methods across
three medical datasets. Results show that ACIL achieves notably
higher average classification accuracy and exhibits better anti-
forgetting capabilities compared to traditional methods.

Index Terms—analytic learning, incremental learning, medical
data classification

I. INTRODUCTION

Conventional machine learning models typically learn by
capturing static data, but real-world data is frequently in stream
format [1]. The interest for incremental learning research has
been fueled by the expectation that models, like organisms,
may learn and adapt to this continually changing dynamic
input. However, incremental learning suffers from a serious
catastrophic forgetting problem, which is also known as the
“stability-plasticity dilemma” in neural system [2], where
directly using new data to optimize the network will erase pre-
vious knowledge, causing the model to experience irreversible
performance degradation. Therefore, how to effectively resist
catastrophic forgetting becomes the core issue in building the
incremental learning model [3].

As a typical representative of incremental learning, class
incremental learning (CIL) enables the learner to incorporate
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the knowledge of new classes incrementally and build a
universal classifier among all seen classes [1]. It becomes
increasingly important as it provides a system that can contin-
uously learn from new categories of data in an ever-changing
world. And there are two main categories to solve catastrophic
forgetting in CIL: replay-based CIL and exemplar-free CIL.

Replay-based CIL. ICaRL [4] is the pioneering replay-
based approach in CIL that combats catastrophic forgetting by
maintaining a limited set of historical data. Chaudhry et al. [5]
structures the replay mechanism as a dual-level optimization
process and retained full predictions for certain anchor points
from previous tasks. De Lange and Tuytelaars [6] implemented
data replay within prototype networks [7], using the exemplars
as pseudo-prototypes to evaluate embeddings. GR [8] is the
first to suggest employing generative adversarial networks
within the context of CIL. DDGR [9] adopts a diffusion
model for generation and instructs the generation of samples
by computing instruction operators via a classifier. However,
due to the fact that the exemplar set retains only a small
fraction of the training dataset, replay-based CIL may suffer
the overfitting problem. In addition, it faces data storage and
data privacy issues. For methods based on generative models,
model performance is subject to the quality of real data, and
training generative models introduces additional computing
and storage overhead.

Exemplar-free CIL. We mainly introduce two types of
CIL incremental learning methods that do not require exem-
plars: regularization-based CIL and model correction-based
CIL. In addition, there are some methods based on dynamic
networks [10]–[12]. The above methods are often implemented
with the help of knowledge distillation [13]–[15].

1) Regularization-based CIL: Regularization-based CIL
imposes some constraints on the objective function to prevent
forgetting. As the first work to address parameter regulariza-
tion, EWC [16] estimates the importance with a Fisher infor-
mation matrix and constrains those weights. Later, KFAC [17]IC
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employs a Kronecker factorization technique to enhance the
approximation of the Fisher information matrix. However, the
process of estimating parameter importance necessitates stor-
ing matrices that are the same size as the network itself, which
poses a challenge in terms of linearly increasing memory
requirements as more tasks are learned.

2) Model Correction-based CIL: Model correction-based
CIL aims to address recency bias, which means that incre-
mental training usually trains more data for new classes [18].
LUCIR [19] suggests employing a cosine classifier to mini-
mize this bias towards recent targets. WA [20] builds upon this
by normalizing the weights following each optimization step
and incorporating weight clipping to ensure that the predicted
probability is proportional to the classifier weight. The model
correction-based approach attempts to reduce the inductive
bias of the CIL model by investigating the specific elements
that lead to catastrophic forgetting. Future research should
delve deeper into additional factors and potential remedies for
catastrophic forgetting.

As an advanced class incremental learning method, analytic
class incremental learning (ACIL) was originally inspired
by analytical learning (AL) [21]. Analytical learning, also
known as pseudoinverse learning [22], is used to address
the limitations of the back-propagation (BP) method, such as
gradient vanishing or exploding, divergence during iteration,
and long training time requiring a large number of iterations.
Analytical learning requires learning weights using the entire
dataset at once, so it may encounter the problem of insufficient
internal demand. It can be alleviated by block-wise recursive
Moore-Penrose learning (BRMP) [21]. Coincidentally, BRMP
uses a recursive method for learning, which can maintain
the influence of previous exemplars while streaming new
exemplars to update weights, which well meets the needs of
class incremental learning. By combining analytical learning
with its recursive formulation, Zhuang et al. [23] built an
ACIL system whose classifier uses an algorithm similar to
concatenated recursive least squares (C-RLS) to train to gen-
erate closed-form solutions [24]. It can effectively preserve
historical exemplars without revisiting them.

Class Incremental Learning for Medical Data. CIL
requires the model to continually learn to differentiate between
an increasing number of classes over time and evaluate all
observed classes at test time, which is essential in the med-
ical field [1]. However, traditional CIL methods often show
more serious catastrophic forgetting problem on medical data,
making them unable to meet medical needs. This is because
medical data is more dependent on professional knowledge
and has more sensitive data privacy issues.

ACIL for Medical Data. Since the introduction of ACIL,
its performance has been enhanced across various domains,
including few-shot CL [25], federated learning [26], reinforce-
ment learning [27], and generalized CIL [28]. However, few
studies have explored the problem of knowledge forgetting in
CIL based on the latest ACIL for medical data. To bridge this
gap, we systematically study this problem for the first time
based on ACIL. Specifically, we introduced ACIL and its two

variants, DS-AL [29] and AIR [24]. In addition, we compared
five advanced incremental learning methods, including LwF
[30], iCaRL [4], EWC [16], MAS [31] and EEIL [32]. By
testing and comparing the average classification accuracy and
forgetting of these methods on three medical disease datasets,
we introduce a benchmark for CIL on medical data.

II. METHODS

A. Class Incremental Learning Definition

The network undergoes continuous training for T tasks,
where the training data for each task consists of different
classes. Let the training and testing datasets for task t (t =
1, . . . , T ) be represented as Dtrain

t = {Ztrain
t ,Ytrain

t } and Dtest
t =

{Ztest
t ,Ytest

t }, respectively. Here, Zt ∈ RNt×c×w×h (e.g., Nt

images with dimensions c × w × h) and Ytrain
t ∈ RNt×dyt

(where task t has dyt classes) are the stacked input and label
(one-hot) tensors. Moreover, Zi∩Zj = ∅ for i ̸= j, indicating
that the input sets for different tasks are disjoint.

B. Analytic Class Incremental Learning Methods

ACIL (Analytical Class Incremental Learning [23]) inte-
grates analytical learning to train classifiers using concate-
nated recursive least squares (C-RLS), mitigating the issue
of catastrophic forgetting and avoiding reliance on historical
data. Compared to traditional BP-based methods, ACIL offers
significant improvements in both time and cost efficiency,
particularly when privacy concerns in medical data prevent the
use of historical information. Since ACIL requires only one
training epoch during subsequent CIL following the pretrain-
ing on task 1, the performance of learning new classes heavily
depends on the initial quality of the backbone on task 1. ACIL
comprises three main components: BP-based training, AL-
based re-alignment and AL-based CIL. As depicted in Figure
1, ACIL begins by utilizing a BP-based method to train a
regular classification network on the base training set (task 1),
which typically involves multiple training epochs. The network
structure can be ResNet [33] or ViT [34] backbone combined
with a conventional classifier. Once training is complete, the
backbone weights are saved and frozen for later use with the
analytic classifier during retraining. Following the BP-based
training, ACIL moves into the AL-based re-alignment phase
using least squares (LS) to determine the optimal solution,
which is then saved. After completing the AL-based re-
alignment, ACIL continues the AL-based CIL process using
C-RLS algorithm, allowing an equivalence between the CIL
and its joint learning counterpart. This process is driven by
the analytic classifier, the correctness of which is detailed in
[23]. Based on ACIL, here are two enhanced variants, which
we will introduce below.

DS-AL (Dual-Stream Analytical Learning [29]) enhances
the performance of ACIL by introducing a compensation
mechanism. Since the backbone is frozen during the incre-
mental learning process, training only the classification head
may be insufficient. DS-AL improves this by comprising a
main stream that provides an analytical linear solution and a
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Fig. 1. The three main components of ACIL: (a) BP-based training, which uses a backbone and a softmax classifier for multiple epochs of training. (b)
AL-based re-alignment, it replaces the previous classifier with an analytical classifier and aligns it with the backbone. The buffer is a high-dimensional
expansion layer. The features will be calculated using the least squares (LS) method to obtain the optimal solution and saved. (c) and (d) AL-based CIL,
using the aligned network to learn new classes using the C-RLS algorithm, with only one epoch of training for each new class.

compensation stream designed to tackle the inherent under-
fitting issue caused by linear mapping. The adjustment of the
compensation mechanism requires optimization across differ-
ent datasets. The compensation stream operates through a dual-
activation compensation (DAC) module, which reactivates the
embedding with an activation function different from that of
the main stream. It compensates for under-fitting by projecting
the embedding onto the null space of the main stream’s linear
mapping.

AIR (Analytical Imbalance Rectifier [24]) addresses data-
imbalanced class-incremental learning by integrating a re-
weighting factor into the loss function, ensuring equal class
contribution. The analytical reweighting module (ARM) calcu-
lates this factor for each class, effectively handling imbalanced
training data. In the AIR paper, this factor is simply the inverse
of the number of samples within each class.

C. Five Classical Class Incremental Learning Methods

LwF (Learning without Forgetting [30]) tackles the problem
of catastrophic forgetting using knowledge distillation. LwF
does not require storing old task data but instead leverages the
output of previous tasks as soft labels to guide the learning
of new tasks. By maintaining consistency between the outputs
of new and old tasks, LwF preserves knowledge from earlier
tasks. It is particularly useful in situations where old task data
cannot be stored, effectively reducing catastrophic forgetting.

iCaRL (Incremental Classifier and Representation Learn-
ing [4]) addresses the problem of catastrophic forgetting
through a sample replay strategy. Unlike LwF, which relies
on knowledge distillation, iCaRL periodically revisits repre-
sentative samples from previous tasks to retain knowledge
while learning new tasks. However, depending on a limited
set of samples can lead to class imbalance, and over time,
the accumulation of errors may degrade the model’s overall
performance.

EWC (Elastic Weight Consolidation [16]) is a
regularization-based approach aimed at protecting important
parameters from previous tasks. It uses the Fisher information
matrix to assess which parameters are crucial for earlier
tasks and penalizes significant changes to these parameters.

However, EWC assumes that the loss function in parameter
space is locally quadratic, which may reduce its effectiveness
when tasks vary significantly.

MAS (Memory Aware Synapses [31]) builds on the idea
of regularizing important parameters, like EWC, but instead
measures parameter importance based on their sensitivity
to output activation. By focusing on controlling parameter
updates that are critical to maintaining memory of old tasks,
MAS offers more robust performance, especially when there
are large differences between new and old tasks.

EEIL (End-to-End Incremental Learning [32]) addresses
a specific issue within incremental learning: task-time bias,
where models tend to favor recently learned tasks. EEIL
introduces a balanced training step at the end of each phase,
ensuring equal representation across all classes. Additionally,
it balances the loss between old and new tasks, preventing
overfitting to the new data and maintaining consistency be-
tween past and present tasks.

III. EXPERIMENTS

Datasets. We conducted our experiments using three
datasets from the MedMNIST collection [35] for multi-class
disease classification: BloodMNIST [36], PathMNIST [37],
and OrganaMNIST [38], as used in previous work [39]. All
images were normalized and rescaled to 28×28 pixels to enable
faster computation and evaluation. These datasets contain 8,
9, and 11 distinct classes, respectively, and were divided into
4 tasks, ensuring the classes are non-overlapping across tasks.
The detailed dataset specifications are provided in Table I.

Evaluation Metrics. To quantitatively assess the perfor-
mance of class incremental learning methods, we adopt two
key metrics commonly used in prior approaches: average ac-
curacy and average forgetting. Average accuracy is calculated
by averaging the accuracy of all previously encountered tasks,
including the current task after learning the current task t. It is
defined as Acct = 1

t

∑t
i=1 Acct,i, where Acct,i represents the

accuracy on task i after learning task t. Average Forgetting
is measured to capture how much performance degrades on
previous tasks after learning a new task t. It is computed as
Ft =

1
t−1

∑t−1
i=1

(
maxj∈{1,...,t−1} Accj,i − Acct,i

)
. At task t,
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Fig. 2. The AIDC benchmark results for three datasets in terms of average
accuracy and average forgetting at each task show that ACIL methods out-
perform the five baseline methods, particularly on the BloodMNIST dataset.

the forgetting on task i is defined as the maximum difference
between the highest accuracy previously achieved on task i
and the accuracy on task i after learning task t.

Implementation Details. We employ ResNet18 [33] as the
backbone for feature extraction, coupled with task-specific
fully connected layers serving as classifiers, to train all
methods across the datasets. We follow previous work in
[39], each experiment is conducted five times using identical
hyperparameters, with different seed values (0, 1, 2, 3, 4) for
each run, and the average results are reported. The models
are optimized using stochastic gradient descent (SGD) with a
batch size of 32 images, trained over 200 epochs, with early
stopping applied to mitigate overfitting. To address potential
gradient explosion, we apply gradient clipping, capping the
maximum gradient value at 10. For replay-based methods, we
adopt a herding [40] strategy to select samples, maintaining
a fixed memory size of 200. For all ACIL methods, we set
the gamma penalty term to 1, and use a random buffer layer
with ReLU activation, projecting the extracted features to 8192
dimensions. For DS-AL, we set the compensation ratio to
0.6. Additionally, we establish a lower bound by fine-tuning
the model on the current task without applying any specific
continual learning strategy.

TABLE I
WE ADHERE TO THE DATA SPLITS AS DEFINED BY MEDMNIST AND

IMPLEMENT A CLASS-PER-TASK DIVISION TO FACILITATE CONTINUAL
LEARNING, CONSISTENT WITH PRIOR RESEARCH [39].

Dataset Train Val Test Class Classes per Task
BloodMNIST 11,959 1,712 3,421 8 [2, 2, 2, 2]
OrganaMNIST 34,561 6,491 17,778 11 [3, 3, 3, 2]
PathMNIST 89,996 10,004 7,180 9 [3, 2, 2, 2]

IV. RESULTS AND DISCUSSION

Results. As shown in Table II and Figure 2, iCaRL outper-
forms the other four non-ACIL methods, which is consistent
with previous work [39]. The three ACIL methods achieve
the best results across the three datasets, with AIR standing
out as the most prominent. On the BloodMNIST dataset, the
performance of the ACIL methods is particularly notable.
Specifically, in terms of average accuracy, AIR exceeds the
best performing classical method (iCaRL) by 38.95%, and in

TABLE II
THE AIDC BENCHMARK RESULTS FOR THE ACIL METHODS AND FIVE

PROVIDED METHODS ARE EVALUATED IN TERMS OF BOTH AVERAGE
ACCURACY AND AVERAGE FORGETTING AT LAST.

Class Incremental Learning

Method BloodMNIST PathMNIST OrganaMNIST

Acc ↑ Forg ↓ Acc ↑ Forg ↓ Acc ↑ Forg ↓

Fine-tuning 24.87 93.88 54.87 50.2 35.78 77.77
EWC [16] 24.41 66.41 49.38 54.58 34.40 76.76
MAS [31] 43.94 69.43 34.22 74.98 44.99 55.13
LwF [30] 27.29 91.71 54.83 50.1 34.76 79.15
EEIL [32] 24.46 94.86 46.68 61.4 31.62 79.04
iCaRL [4] 41.17 37.83 69.44 15.85 58.05 17.83

ACIL [23] 79.84 9.64 73.55 9.06 60.55 11.56
DS-AL [29] 80.07 11.58 73.67 10.09 61.33 14.77
AIR [24] 80.12 11.74 74.61 8.42 61.15 9.73

terms of average forgetting, ACIL exceeds the best performing
classical method (iCaRL) by 28.19%.

Discussion. The superior performance of AIR can be ex-
plained by the fact that the three datasets used are imbalanced.
For example, the class ratio of BloodMNIST is approximately
7: 18: 9 : 17: 7 : 8 : 19: 14. AIR addresses this issue by in-
corporating a re-weighting factor into the loss function, which
balances the contribution of each class, thereby producing an
unbiased optimal classifier. Additionally, the excellent perfor-
mance of ACIL methods on the BloodMNIST dataset can be
attributed to the fact that the features learned by the backbone
in task 1 are transferable across all categories in BloodMNIST.
As a result, learning only the classification head in subsequent
tasks is sufficient for achieving strong results. Moreover, since
ACIL methods can mathematically prove that incremental
learning in subsequent tasks is equivalent to joint learning,
they are better able to mitigate catastrophic forgetting, leading
to overall improved results.

V. CONCLUSION

In this paper, we proposed AIDC (Analytical Learning
in Incremental Disease Classification), a benchmark based
on ACIL methods to systematically study the problem of
knowledge forgetting of CIL in the medical field. By com-
paring and analyzing with five classic CIL methods on three
medical datasets, we found that ACIL methods lead CIL
in the medical field in terms of both average accuracy and
forgetting. In addition, ACIL methods do not need to store
old exemplars, and learning of each new class only requires
one epoch. These advantages further show that ACIL has great
potential in promoting CIL of disease classification, and has
the opportunity to become a new generation of CIL framework
for disease classification in the future.
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