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Abstract. Accurate quantification of optic disc (OD) is clinically sig-
nificant for the assessment and diagnosis of ophthalmic disease. Multi-
index OD quantification, i.e., to simultaneously quantify a set of clin-
ical indices including 2 vertical diameters (cup and disc), 2 whole ar-
eas (disc and rim), and 16 regional areas, is an untouched challenge
due to its complexity of the multi-dimensional nonlinear mapping and
various visual appearance across patients. In this paper, we propose a
novel multitask ensemble learning framework (DMTFs) to automatical-
ly achieve accurate multi-types multi-index OD quantification. DMTFs
creates an ensemble of multiple OD quantification tasks (OD segmenta-
tion and indices estimation) that are individually accurate and mutually
complementary, and then learns the ensemble under a multi-task learn-
ing framework which is formed as a tree structure with a root network
for shared feature representation, two branches for task-specific predic-
tion, and a multitask ensemble module for aggregation of multi-index
OD quantification. DMTFs models the consistency correlation between
OD segmentation and indices estimation tasks to conform to the accu-
rate multi-index OD quantification. Experiments on the ORIGA datasets
show that the proposed method achieves impressive performance with the
average mean absolute error on 20 indices of 0.99± 0.20, 0.73± 0.14 and
1.23 ± 0.24 for diameters, whole areas and regional area, respectively.
Besides, the obtained quantitative indices achieve competitive perfor-
mance (AUC=0.8623) on glaucoma diagnosis. As the first multi-index
OD quantification, the proposed DMTFs demonstrates great potential
in clinical application.

1 Introduction

Accurate quantification of optic disc (OD) from fundus images is the most clini-
cally important for the comprehensive assessment of ophthalmic disease. Accord-
ing to [7], multi-index OD quantification is defined as simultaneously quantifying
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a set of clinical indices, i.e., 2 vertical diameters (cup and disc), 2 whole areas
(disc and rim), and 16 regional areas (as shown in Fig.1), to characterize the
global and focal appearance of OD. Clinically, accurate quantification provides
effective assessment tools and detailed information for diagnosis, treatment, and
follow-up of many ophthalmic diseases, especially chronic glaucoma [8,12,14].

Fig. 1. Multi-index OD quantification includes three type of indices: diameters, whole
areas and regional areas. (a) diameters of optic disc and cup. (b) areas of optic disc and
neuroretinal rim for the whole disc and for individual 45 degree regions followed as [7]
to characterize the global and local appearance. RR: rim regions; DR: disc regions;
WR: whole rim; WD: whole disc.

Existing methods address only single index OD quantification by either learn-
ing a nonlinear mapping between fundus image and quantitative index, such as
CDR [16], or measuring on the segmented OD mask [2, 4, 9]. However, those
methods are still open challenging to achieve multi-index OD quantification be-
cause the former approach (direct estimation) always implements a complex
nonlinear regression which is hard to train individually [5, 17]; the latter is a
common segmentation-based approach, but the great variability of shape and
inhomogeneity in OD appearance, especially the ambiguity optic cup borders,
easily cause critical inconsistency of OD indices compared to actual ones.

No work has successfully achieved multi-index OD quantification due to three
challenges: 1) estimating multiple indices from fundus image is complicated and
difficult due to the complexity of nonlinear mapping from fundus image to mul-
tivariate vector. 2) Large variation of fundus appearance cross patients increas-
es the difficulty of feature representation for comprehensive OD quantification.
OD appearance changes in different ways with different pathology, e.g., cupping
caused by thinning of rim and notch caused by focal enlargement of the cup [1].
3) Combining OD segmentation and direct index estimation for accurate quan-
tification is challenging due to the modeling difficulty of correlations between
the two approaches.
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Multi-task learning (MTL) [6,10,15,16] has great potential since it improves
the performance of the individual task by joint learning of the two OD quantifica-
tion approaches (OD segmentation and indices estimation). However, traditional
MTL methods can not formulate the two approaches into an ensemble model to
aggregate their quantitative indices effectively. Our work constructs a particular
case of multi-task learning when OD quantification is divided into an ensemble
of multiple correlated but diverse tasks by modeling the consistency correlation
between those tasks. The multi-task learning structure is encoded as a tree,
where the root indicates task-shared representation, and branches implement a
set of decision trees which obtain the confident task-specific predictions that can
be aggregated into a consistent OD quantification in multiple granularities [11].

In this paper, we propose a novel multitask ensemble learning framework
(DMTFs) to automatically quantify optic disc (OD) by obtaining multi-type
quantitative indices. DMTFs is capable of achieving accurate OD quantification
by: 1) creatively formulating multi-index OD quantification as multitask ensem-
ble learning to learn OD segmentation and indices estimation tasks jointly; 2)
modeling consistency correlations between two quantification tasks based on the
advantages integration of multi-task and ensemble learning frameworks; and 3)
addressing the multitask ensemble learning with multi-objective optimization to
find the effective solution. Benefit from the multitask ensemble learning, DMTFs
enables high-efficiency solution on accurate multi-index OD quantification.

Our main contributions are three-folds: 1) For the first time, multi-index OD
quantification is achieved to help the clinician to assess global and focal changes
of optic disc for diagnosis, treatment, and follow-up of many ophthalmic dis-
eases. 2) The proposed distribution regression forest provides an effective ap-
proach for task-specific feature selection and distribution regression to handle
the task-specific prediction problem in each individual task. 3) Multitask ensem-
ble learning framework (DMTFs) is innovatively proposed to create an ensemble
of multiple OD quantification tasks (OD segmentation and indices estimation)
to effectively achieve accurate multi-index OD quantification.

2 Deep Multi-Task Forests (DMTFs)

DMTFs (Fig.2) creates an ensemble of multiple OD quantification tasks (OD
segmentation and indices estimation), and learns the ensemble under a multi-
task learning framework by modeling the consistency correlations between the
two quantification tasks. Taking advantages of multi-task learning and ensemble
learning, DMTFs promotes performance improvement on each individual task
and achieves accurate multi-index OD quantification by multitask ensemble.

2.1 Architectures of DMTFs

The proposed DMTFs consists of a root network for shared feature representa-
tion, followed with two branches for task-specific prediction (OD segmentation
and indices estimation) by implementing a set of distribution regression forests,
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Fig. 2. Overview of DMTFs, which is a multitask ensemble learning framework con-
sisting of a root CNN for task-shared feature representation, two task-specific branches
for OD segmentation and indices estimation tasks, and a multitask ensemble module
for joint optimization and final OD quantification. Each branch implements a distri-
bution regression forest, randomly linked with the shared root network. The DMTFs
is trained by the multi-objective optimization algorithm with the end-to-end manner.

and a multitask ensemble module for final OD quantification. The DMTFs al-
lows for learning of the inter-task correlation by shared feature representation
and consistency regularization, whilst simultaneously allows for modeling of task-
specific correlation by task-specific feature selection and ensemble learning. To
learn those correlations, the objective of DMTFs is formulated as

arg min
w,pseg,pest

( Lseg(w,pseg)︸ ︷︷ ︸
segmentation task loss

, Lest(w,pest)︸ ︷︷ ︸
estimation task loss

,Lcons(w,pest,pseg)︸ ︷︷ ︸
consistency loss

)ᵀ (1)

where Lseg is the loss to ensure the precise of OD segmentation task, Lest is the
estimation loss to ensure the accuracy of the indices regression task, and Lcons

denotes the consistency regularization to impose a penalty for the consistent
OD quantification from segmentation and estimation tasks. w is the parameters,
pseg,pest are predicted indices vectors by the segmentation and estimation tasks,
respectively. Notes p = (Dia1, Dia2,WR,WD,RR1 : RR8, DR1 : DR8).

Multi-task learning often requires modeling of the trade-off between OD seg-
mentation and indices estimation tasks, for example, the direct estimated area
of the regional rim is conflicting with the segmented rim region. To find the
solutions that are not dominated by any tasks, DMTFs is formulated as multi-
objective optimization and the loss function is defined as a vector-valued loss as
shown in Eq.1 with the overall objective of finding a Pareto optimal solution.

2.2 Task-Specific Branches with Distribution Regression Forest

Task-specific branches employ distribution regression forests (DRF) to individ-
ually achieve OD segmentation and indices estimation tasks by constructing a
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multitude of differentiable decision trees [13] linked with the root network. Each
task-specific branch extracts task-related features and obtains task-specific pre-
diction based on the feature selection and distribution regression of DRF module.

Each DRF module is consisted of a set of split nodes N and leaf nodes L.
Split and leaf nodes construct a multitude of decision trees at training time and
output the prediction of the individual branch. To enable the tree with task-
related feature selection, a routing function µl(x|w) is defined to provide the
probability that input x will reach leaf node l as

µl(x|w) =
∏
n∈N

hn(x; w)1l(l∈L
left
n )(1− hn(x; w))1l(l∈L

right
n ) (2)

where 1l(·) is an indicator function, Lleft
n and Lright

n denote the sets of leaf nodes
held by the subtrees rooted at the left and right children left, right of node n,
hn(x; w) indicates the probability that split node n ∈ N selects input feature x
as its task-specific feature.

To enable the forest with the capability to be optimized end-to-end togeth-
er with the shared root network, the differentiable split function is defined as
hn(x; w) = σ(fϕ(n)(x; w)), where σ(·) is the sigmoid function, fϕ(n)(x; w) is
outputs of the root network, adopted as the shared feature extraction function
to end-to-end learn the expressive representation of fundus image. ϕ(·) is an
index function to assign the connection between the output of function f(x; w)
and split node n. In this work, the index function ϕ(·) is a random function to
link split nodes with the shared root network randomly.
OD segmentation branch. OD segmentation branch formulates OD segmen-
tation task as the regression segmentation problem to learn the distribution of
OD and OC (optic cup) region with DRF module. To improve the segmentation
for OD quantification, we develop a novel distribution-aware segmentation loss
to guide the DRF to capture the smoothness priors of the OD and OC region.
The segmentation loss includes a dice coefficient loss Ldice measuring the overlap
between the prediction and ground truth, and a distribution loss Ldist encour-
aging the predictive borders of OD and OC regions to be similar to the ground
truth. Therefore, the distribution-aware segmentation loss is defined as

Lseg(w,pseg) = 1−
2
∑

i piyi∑
i p

2
i +

∑
i y

2
i︸ ︷︷ ︸

Ldice

+
∑
c

dclog(sc)︸ ︷︷ ︸
Ldist

(3)

where p and y denote the predicted probability map and ground truth, respec-
tively. s and d denote the predicted and ground truth distribution of border
pixels, and c is the length of the distribution.
Indices estimation branch. Indices estimation branch handles direct indices
estimation task by learning a nonlinear mapping from shared feature to the OD
quantitative indices with another DRF module. In this work, the discrete dis-
tribution concatenated with the normalized OD areas and diameters acts as the
ground truth to train DMTFs together with OD segmentation labels. To enable
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the DRF module with the ability of nonlinear regression, the Kullback-Leibler
(K-L) divergence is adopted to measure the similarity between predicted distri-
bution pest and ground truth d. Therefore, the learning procedure is minimizing
the following cross-entropy loss as Lest(w,pest) = − 1

N

∑
dlog(pest).

2.3 MultiTask Ensemble Module for Multi-Index OD Quantification

To learn the ensemble of two OD quantification tasks and model the consisten-
cy correlation between tasks, multitask ensemble module is developed, which
contains a consistency loss function to impose the penalty for the consistent
OD quantification between segmentation and estimation tasks, and a two-stage
aggregation for final OD quantitative indices. Consistency loss is designed to
minimize the prediction difference between two branches, i.e., OD segmentation
and indices estimation tasks. Ideally, indices predicted by the two branches are
the same. To ensure the indices from different branches as consistent as possi-
ble, the consistency loss is defined as the difference between the indices vectors
Lcons = 1

2 (pest − pseg)2, pest and pseg denote indices vectors coming from esti-
mation branch and OD segmentation branch, respectively.

To integrate predictions from each leaf node of the two task branches, two-
stage aggregation is adopted. 1) Intra-task aggregation: with the prediction on
each leaf nodes of DRF, the task-specific quantitative indices are obtained by
aggregating those leaf nodes predictions into a single coherent output followed
ensemble learning as

∑
l∈L µl(x|w)pl, where µl(x|w) is the probability that

feature x be selected by leaf node l and defined in Eq.2, pl is the predicted
indices vector on leaf node l. Note that pl is measured based on the segmented
mask when node l belongs to OD segmentation branch, while directly regressed
when belongs to indices estimation branch. 2) Inter-task aggregation: with the
prediction of each task-specific branch, the final quantitative indices are build
based on the simple yet effective adaptive weighting method. DMTFs learns
to average task weighting by considering the loss for each task, and the task
weighting for segmentation and estimation tasks are defined as:

λseg =
exp(Lt

seg)

exp(Lt
seg) + exp(Lt

est)
, λest =

exp(Lt
est)

exp(Lt
seg) + exp(Lt

est)
(4)

where Lt
seg and Lt

est are the average loss from segmentation and estimation task
branches in the t-th epoch over several iterations.

3 Experiments

The effectiveness of DMTFs is validated with the open accessible dataset ORIGA
[3]. Experimental results show that DMTFs accurately quantifies optic disc with
multiple types of 20 indices with average mean absolute error (MAE) of 0.99±
0.20, 0.73± 0.14, 1.23± 0.24 for diameters, whole areas and regional areas.

Datasets and Configurations The ORIGA contains 650 images (168 glau-
comatous and 482 normal eyes) with manual labeled optic disc mask, divided
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into 325 training and 325 testing images. To leverage the powerful representa-
tion for the circle-shaped OD appearance, the input fundus images are pixel-
wisely converted into the polar coordinate system. Pixels in optic disc region are
re-sampled along the angular and radius dimension, therefore resulting in the
regions of OC, OD, and background in the ordered layout.

The pyramid integration structure [16] is adopted as the shared root network
for shared feature representation. We apply the alternating optimization strategy
to obtain the optimistic parameters and prediction on leaf nodes.

Overall Performance Results (Table 1) demonstrate that DMTFs suc-
cessfully delivers accurate multi-index OD quantification with average MAE of
0.99± 0.20, 0.73± 0.14, 1.23± 0.24 for diameters, whole areas and regional ar-
eas, respectively. Meanwhile, the results indicate DMTFs achieves more accurate
multi-index OD quantification than other single-task-based approaches with the
lowest average MAE 0.98±0.19 over all the 20 quantitative indices. Experimental
results on glaucoma diagnosis show that the quantitative indices provide more
effective assessment tools (with 0.8623 AUC) for ophthalmic diseases diagnosis.

Effectiveness of MultiTask Ensemble Learning Indices shown in the
third and fourth columns are independently obtained with only one task branch
(OD segmentation or estimation). The results clearly indicate that multitask
ensemble improves average 3.3%, 2.2% of 20 indices compared with the single
segmentation and estimation task branch, respectively. Compared with the single
task, DMTFs obtains the smallest bias overall indices and lowest average MAE
overall 20 indices. The average MAE and bias show multitask ensemble learning
framework brings clearly improvements for all the indices quantification.

Fig. 3. The ROC curves with AUC scores
for glaucoma diagnosis based on the quan-
titative multi-types indices for our DMTFs
while only CDR for others. Source: Fu et
al. [4] with our results added.

Comparison Results, compared
with measured indices on the state-of-
the-art segmented mask [4], show that
DMTFs achieves the average improve-
ment of 2.15% on 20 indices. Com-
paring column 2 and 5 of Table 1, it
clearly shows DMTFs obtains more
accurate multi-index OD quantifica-
tion than single segmentation-based
approach, which demonstrates the re-
markable advantages in more detailed
OD quantification.

Effectiveness of Glaucoma Di-
agnosis Fig.3 shows the success of
the proposed DMTFs on glaucoma
diagnosis based on the quantitative
20 indices. Evidenced by ROC curves
and AUC value (0.8623), the glauco-
ma diagnosis results indicate that our

multi-index OD quantification achieves a competitive performance using the 20
quantitative indices compared with the other methods only using the CDR value.
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Table 1. Performance of DMTFs under different configurations and state-of-the-art
method for multi-index OD quantification. Average Mean Absolute Error (MAE) is
used for the quantification evaluation criterion.

Method MNet [4]
DMTFs

Only Segmentation Only Estimation Ensemble
Diameter (102 pixel)

Dia1 0.97±0.23 0.98±0.27 0.97±0.29 0.96±0.21
Dia2 1.09±0.28 1.08±0.21 1.05±0.25 1.05±0.19

Whole areas (104 pixel)
WR 0.32±0.09 0.34±0.18 0.32±0.15 0.32±0.12
WD 1.67±0.16 1.68±0.15 1.65±0.20 1.65±0.15

Regional areas (104 pixel)
RR1 0.74±0.21 0.74±0.25 0.75±0.23 0.73±0.21
RR2 0.39±0.13 0.35±0.12 0.34±0.13 0.34±0.10
RR3 0.11±0.08 0.12±0.12 0.12±0.10 0.11±0.09
RR4 0.55±0.25 0.57±0.33 0.55±0.32 0.55±0.29
RR5 0.70±0.31 0.68±0.32 0.68±0.34 0.69±0.21
RR6 0.30±0.15 0.30±0.23 0.31±0.14 0.30±0.13
RR7 0.15±0.26 0.14±0.32 0.15±0.25 0.13±0.24
RR8 0.26±0.17 0.27±0.31 0.25±0.22 0.25±0.18
DR1 1.28±0.19 1.29±0.14 1.25±0.23 1.26±0.12
DR2 3.17±0.54 3.21±0.57 3.29±0.53 3.21±0.46
DR3 3.80±0.38 3.79±0.42 3.78±0.39 3.78±0.29
DR4 3.32±0.36 3.30±0.24 3.29±0.22 3.30±0.20
DR5 2.55±0.31 2.64±0.41 2.57±0.23 2.57±0.18
DR6 1.77±0.29 1.76±0.27 1.77±0.32 1.76±0.18
DR7 0.68±0.24 0.66±0.23 0.60±0.24 0.61±0.17
DR8 0.09±0.08 0.08±0.19 0.06±0.06 0.06±0.05

4 Conclusion

In this paper, multitask ensemble learning framework (DMTFs) is proposed to
achieve multi-index OD quantification for clinical assessment of ophthalmic dis-
ease. The DMTFs innovatively creates an ensemble of multiple OD quantification
tasks (OD segmentation and indices estimation) and learns the ensemble with a
multi-task learning framework by modeling the consistency correlation between
the two tasks. Experimental results show that DMTFs is capable of achieving im-
pressive performance for multi-index OD quantification. The proposed method
has great potential in clinical ophthalmic disease diagnoses.
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