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Abstract
Dictionary learning has shown its effectiveness in computer vision with the concise expression form but the powerful 
representation. Dictionary learning represents images with a bag of visual words (BoVW), which is a collection of atoms 
expressively representative for images. Recently, several task-specific dictionary learning methods have been proposed and 
successfully applied in medical image analysis, such as de-noising, classification, segmentation, and so on, which promotes 
the development of computer-aided diagnosis. In this paper, first we give a survey for dictionary learning-based medical 
image analysis methods including: (1) three discriminative dictionary learning frameworks, (2) CT image de-noising based on 
dictionary learning, and (3) histopathological image classification using sparse representation. Then, a novel method named 
Low-rank Shared Dictionary Learning (LRSDL), is presented to achieve accurate glaucoma diagnosis on fundus images. 
The LRSDL generates a shared codebook for image reconstruction and a particular one to handle the difference between the 
healthy and glaucomatous images. Benefit from this strategy, LRSDL not only possess distinct glaucoma-related features, 
but also share common patterns among all the fundus images. Experimental results show that the method effectively delivers 
glaucoma diagnosis with the accuracy of 92.90%. This endows dictionary learning method a great potential for glaucoma 
diagnosis and proves the feasibility of its application to medical image analysis.

1 Introduction

With the rapid accumulation of medical big data, build-
ing systems for automated image analysis is essential and 
necessary for the clinical practice and research. In the past 
decades, machine learning became increasingly popular in 
medical image analysis [1–3]. As a leading machine learn-
ing methodology, dictionary learning is good at spare image 
representation because it lies in the expressiveness and dis-
crimination of the bag of visual words [4]. Most research 
focus on dictionary learning methods for medical image 
analysis, such as image de-noising [5–10], classification 
[11–20], segmentation [21–26], and so on.

Dictionary learning is a representation learning method 
which aims at finding a sparse representation of the input 
data in the form of a linear combination of basic elements. 
The elements are called as atoms or visual words which 
forming a dictionary. In the classical dictionary approach, 
visual words are generated from all training images and 
collected into a dictionary. Based on the generation of the 
representative dictionary, a global representation per image 
is extracted as the histogram of visual words and provides 
a unique feature for image classification, de-noising, seg-
mentation, and so on. Existing applications of dictionary 
learning methods in medical image analysis are mainly 
concentrated in: (1) CT image de-noising, where dictionary 
can effectively distinguish the noise-free image and noisy 
part from sparse representation; (2) Histopathological image 
classification, where dictionary can capture its diverse his-
tology features to make accurate diagnose.

While the discriminative power of dictionary learning is 
nowadays demonstrated, one of the fundamentally important 
topic in computer vision and medical image analysis is find-
ing the sparse representation for dictionary learning model. 
Nowadays, most researches are devoted to improving the 
performance of dictionary learning model by enhancing the 
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representation ability of the sparse representation, especially 
the discrimination power of the learned dictionary. However, 
there are still challenging due to: (1) inevitably introduced 
noise in the process of medical image acquisition, transmis-
sion and recording because of the limitations of medical 
imaging system, blurs or masks the important information of 
the images; (2) lack of effective method to design discrimi-
native class-specific dictionaries; (3) the high variability and 
extreme inhomogeneity of medical images make it difficult 
to capture available features.

In this paper, we give a survey for dictionary learning 
in medical image analysis and its application for glaucoma 
diagnosis. Firstly, we introduce and compare three of the 
most widely used discriminative dictionary learning models, 
including discriminative K-SVD (D-KSVD), label consistent 
K-SVD (LC-KSVD) and Fisher discrimination dictionary 
learning (FDDL); Secondly, we summarize the applications 
of dictionary learning methods in medical image analysis, 
including applications in CT image de-noising and histo-
pathological image classification; Lastly, we utilize the 
low-rank shared dictionary learning (LRSDL) to achieve 
glaucoma automatic diagnosis on fundus images for the 
first time.

2  Review of Dictionary Learning Methods

In recent years, multitudes of researchers have been devoted 
to the study of designing a discriminative dictionary to 
improve the performance of dictionary learning models. In 
other words, dictionary atoms should have different charac-
teristics according to the requirements of specific applica-
tion problems. In this section, we will introduce three dis-
criminative dictionary learning methods proposed recently, 
including Discriminative K-SVD, Label Consistent K-SVD 
and Fisher Discrimination Dictionary Learning. We focus on 
their improvements of objective function and the relation-
ship among them.

2.1  Discriminative K‑SVD

When sparse representation [27] was initially applied to 
image processing problems, the dictionary was formed by all 
the training images. The major drawback connected with this 
approach is that the representational power of the diction-
ary especially lies in the quality and quantity of the training 
image. In order to overcome the shortcoming, K-SVD algo-
rithm [28] was widely employed for learning a smaller-sized 
dictionary from the given training images while maintaining 
the representational power of the dictionary, which finds a 
solution for the following problem:

where Y is the set of input samples, D is the dictionary, 
X = [x1,… , xN] is the coefficient matrix, and T determines 
the sparse degree of the representation coefficient. It’s obvi-
ous from the expression that the K-SVD only focuses on the 
representational power of the dictionary without considering 
its capability for discrimination.

Zhang et  al. [29] proposed Discriminative K-SVD 
(D-KSVD) to obtain a dictionary that has both representa-
tional power and good discrimination capability based on the 
K-SVD model for general sparse representations. It added 
a simple linear regression term as the penalty term and its 
objective function is as follow:

where H is the label of the training samples, W is the param-
eter of the classifier, and � and � are scalars controlling the 
relative contribution of the corresponding terms. The first 
regularization term determines representation ability and the 
second term indicates discrimination power.

2.2  Label Consistent K‑SVD

Jiang et al. [30] proposed Label Consistent K-SVD (LC-
KSVD) to learn a discriminative dictionary for sparse cod-
ing. Besides the reconstruction error and the classification 
error mentioned in D-KSVD, they introduced a new label 
consistency constraint called “discriminative sparse-code 
error” into the objective function. The newly added term 
can connect label information with each dictionary atom to 
enforce discriminability in sparse codes during the diction-
ary learning process. Its objective function can be defined 
as follows:

where the same notation and terms used in D-KSVD have 
the same meaning, and Q = [q1, q2,… , qN] ∈ ℝ

K×N are the 
“discriminative” sparse codes of input samples Yfor classifi-
cation. And qi = [q1

i
, q2

i
,… , qK

i
]t = [0,… , 1, 1,… , 0]t ∈ ℝ

K 
is the class indicator of the input sample yi , where the 
nonzero value indicates that the input sample has the same 
label as the dictionary atoms. The term ∥ Q − AX ∥2 repre-
sents the discriminative sparse-code error, which enforces 

(1)
<D,X> = argmin

D,X

∥ Y − DX ∥2

subject to ∥ xi ∥0≤ T

(2)

<D,W,X> = argmin
D,W,X

∥ Y − DX ∥2

+ 𝛾 ∥ H −WX ∥2 +𝛽 ∥ W ∥2

subject to ∥ xi ∥0≤ T

(3)

<D,W,A,X> = argmin
D,W,A,X

∥ Y − DX ∥2

+ 𝛾 ∥ H −WX ∥2 +𝛽 ∥ Q − AX ∥2

subject to ∥ xi ∥0≤ T
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that the transformed sparse codes AX approximate the dis-
criminative sparse codes Q. It forces the samples from the 
same class to have very similar sparse representations, which 
results in good classification performance even using a sim-
ple linear classifier.

2.3  Fisher Discrimination Dictionary Learning

Yang et al. [31] proposed a novel Fisher discrimination-
based dictionary learning (FDDL) scheme. The Fisher dis-
crimination criterion was imposed on the coding coefficients 
to improve its discrimination. Meanwhile, they learned a 
structured dictionary which associated the dictionary atoms 
with the corresponding class labels. It made the reconstruc-
tion error discriminative. In order to achieve the above target 
functions, they designed the following objective function:

where Y = [Y1, Y2,… , Yc] is the set of training samples, 
and Yi is the subset of the training samples from class 
i, and c is the total number of classes. Both the diction-
ary D = [D1,D2, ...,Dc] and the coding coefficients 
X = [X1,X2, ...,Xc] are discriminative, where Di is the class-
specified sub-dictionary associated with category and Xi 
is the sub-matrix containing the coding coefficients of Yi 
over D. The first item determines the discrimination of the 
learned dictionary; the second term is the sparsity constraint; 
f(X) indicates the discrimination ability of the coefficient 
matrix X.

The first term in Eq. 4 is usually called as the discrimina-
tive fidelity term. It can be formulated as follow:

By minimizing the above formula, each class-specific sub-
dictionary in the whole structured dictionary is good at rep-
resenting the training samples from the associated class but 
poor at representing other classes.

The third term f(X) which called as Fisher-based discrimi-
native coefficient term, is designed as follow:

where Mi and M are the mean vector of Xi and X respectively. 
Through minimizing the function, the coding coefficient is 
discriminative since it can minimize the intra-class differ-
ences and maximize the inter-class differences of X at the 
same time.

(4)
<D,X> = argmin

D,X

L(Y ,D,X)

+ 𝛼 ∥ X ∥1 +𝛽f (X)

(5)
L(Y ,D,X) =∥ Yi − DXi ∥

2
F
+ ∥ Yi − DiX

i
i
∥2
F

+
∑

j≠i

∥ DjX
j

i
∥2
F

(6)f (X) =

c
∑

i=1

∥ Xi −Mi ∥
2
F
− ∥ Mi −M ∥2

F
+ ∥ X ∥2

F

The purpose of the three dictionary learning method men-
tioned above is to obtain a discriminative dictionary. Their 
relationships are shown in Fig. 1. It’s obvious that the three 
methods incorporate discriminative terms into objective 
function to get a discriminative dictionary.

3  Applications in Medical Image Analysis

Dictionary learning methods have been successfully 
exploited in several medical image analysis tasks, including 
image de-noising and a variety of classification works. In 
this paper, we focus on the CT image de-noising and histo-
pathological image classification. Finally, on behalf of dem-
onstrating the potential of dictionary learning in the field of 
medical image analysis, we apply the dictionary learning 
method to the glaucoma diagnosis task.

3.1  CT Image De‑noising

In the past decade, Computed Tomography (CT) has become 
an important tool in clinical diagnosis, but it also brings 
high radiation doses to patients during X-ray CT examina-
tions. Therefore, in clinical practice, decreasing the X-ray 
tube current is generally utilized to decrease radiation dose, 
so as to reduce the harm it causes to human. Nevertheless, 
low-dose CT (LDCT) is bound to provide degraded images 
due to increased noise and artifacts.

Noise can be removed efficiently by sparse representation 
model. Given a noisy image, sparse representation model 
assumes that the noise-free image can be sparsely repre-
sented via a redundant dictionary, whereas the dictionary 
cannot represent the noisy parts sparsely. Then the noise can 
be removed efficiently according to this difference.

Based on the idea mentioned above, many dictionary 
learning methods have been applied to improve the perfor-
mance of sparse representation model for medical image 
de-noising. Yu et al. [6] first proposed a method of CT image 

Fig. 1  Relationship between D-KSVD, LC-KSVD, and FDDL
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de-noising based on sparse representation using a global dic-
tionary. They applied the K-SVD algorithm to train a global 
dictionary used to approximate the image’s local feature. 
If different images had similar features, they could use one 
dictionary to de-noise these images although these images 
were different. When it was used to reconstruct the image, 
they added gauss weight, which improved the performance 
of de-noising. Bai et al. [14] proposed a method of de-nois-
ing based on clustering integration and sparse dictionary 
learning, then applied it to medical image de-noising. In 
this approach, the kernel regression and clustering integra-
tion were combined to improve clustering performance. The 
sparse dictionary learning algorithm was then used to learn 
the dictionaries of each cluster. Since the method used both 
self-similarity and sparse prior knowledge, training dic-
tionary was stable and adaptable. To prove the performance 
of their method, they took several experiments on two CT 
images and two MR images. Experimental results showed 
that the method had good performance and good stability 
between running time and efficiency comparing with several 
current excellent algorithms.

As for artifacts, it is found in [7] that high-contrast arti-
facts can also obtain prominent sparse representation. There-
fore, it’s hard to suppress it effectively via ordinary diction-
ary learning processing. Shi et al. [8] introduced an artifact 
suppressed dictionary learning algorithm (ASDL), which 
exploited scale and orientation information of artifacts to 
construct discriminative dictionaries for artifact suppres-
sion. The algorithm contained two main steps. On the first 
stage, three novel discriminative dictionaries were devised 
to characterize high-frequency artifact components in differ-
ent orientations. Then, the residual noise and artifacts were 
suppressed by the general dictionary learning processing.

3.2  Histopathological Image Classification

Histopathological images carry rich structural information, 
making them important to the diagnosis of many diseases. 
Simultaneously, due to the diversity of histology features 
and rich geometric structure, it’s a great challenge for doc-
tors to make an analysis of histopathological images and 
diagnose diseases. In recent years, computer-aided diagnosis 
(CAD) technology has developed rapidly and been applied 
widely, which has been a great assist to doctors. Recently, 
sparse representation has played an important role in image 
classification tasks and gradually become one of the hottest 
research fields. Liu et al. [12] firstly exploited sparse repre-
sentation for CAD classification. Subsequently, the sparse 
representation framework has been frequently applied to the 
medical domain.

Srinivas et al. [13, 19] firstly applied the sparse represen-
tation to histopathological image representation and clas-
sification. Considering the importance of the relevance of 

color information for histopathological image classification 
tasks, they proposed a simultaneous sparsity model (SHIRC) 
for multiple color channels of histopathological images. The 
authors exploited the correlations among the RGB channels 
of the color images in a sparse linear model setting under 
suitable channel-wise constraints. Subsequently, inspired 
by that pathologists often diagnose a tissue image based 
on local objects and the presence or absence of these local 
objects in an image matters much more than their absolute 
spatial location, they infused the simultaneous sparsity 
model with a robust locally adaptive flavor (LA-SHIRC) to 
address the issue of correspondence of local image objects 
located at different spatial locations. In fact, they replaced 
the whole image with local desired object blocks, then 
obtained the class decision of each test image block through 
SHIRC model, and combined the block decisions to identify 
the global image at last.

Whether it’s SHIRC or LA-SHIRC, they both used all 
the training samples as atoms to construct dictionaries. 
However, recent work has shown that adaptive dictionar-
ies significantly outperform ones constructed by simply 
stacking training samples together. To optimize the above 
frameworks, a novel method of Histopathological Image 
Classification based on Discriminative Feature-Oriented 
Dictionary Learning (DFDL) was proposed in [11, 18]. The 
main challenge in the histopathological analysis is the geo-
metric richness of tissue images which results in difficulty to 
obtain reliable discriminative features for classification. To 
overcome the challenge, [11] proposed an automatic feature 
discovery framework via learning class-specific dictionaries 
and presented a low-complexity method for classification. 
It introduced the label information of training samples and 
directly learned health dictionary and diseased dictionary. 
The framework worked by minimizing intra-class differ-
ences, while simultaneously emphasizing inter-class differ-
ences in the dictionary learning stage.

Because of the geometric richness of histopathologic 
image and the various types of cells, the morphological and 
geometric changes of cells may be large in the homogeneous 
images, while there are certain similarities in non-homoge-
neous images, which results in a distance between image 
features belonging to the same class may be greater than 
the different category. Therefore, the healthy and diseased 
dictionaries learned by DFDL had high similarity. To make 
up for this shortcoming, Tang et al. [17] proposed a Dis-
criminative feature-oriented dictionary learning method with 
the Fisher criterion (FCD-FDL) for histopathological image 
classification. In order to improve the difference between 
health dictionary and diseased dictionary, they used Fisher 
criterion to directly constrain the intra-class distance and the 
inter-class distance of the learning dictionary (minimize the 
intra-class distance and maximize the inter-class distance), 
rather than constrained sparse representation coefficient and 
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obtained a more discriminative healthy dictionary and dis-
eased dictionary. At the same time, better performance of 
the sparse representation was obtained by minimizing the 
reconstruction error based on the same class samples over 
the learned dictionaries and maximizing reconstruction error 
based on different class samples. Finally, the classifier was 
constructed by employing the reconstruction error vector of 
test samples.

As described earlier, local image regions of the histo-
pathologic image from different classes may share common 
features. To solve the problem furtherly, Li et al. [20] pro-
posed a new framework named analysis-synthesis model 
learning with shared features (ALSF) algorithm for his-
topathologic image classification. This framework could 
represent both similarities and differences in histo-patho-
logical images from distinct classes more accurately due to 
the learning of a low rank shared dictionary and a shared 
analysis operator. And it combined analysis dictionary 
(determines the sparse code from the images) and synthe-
sis dictionary (yields images by multiplying with the sparse 
code) to learn the classifier and the feature extractor at the 
same time, which reduced the computation load efficiently.

Comparing with the above three methods, as shown in 
Table 1, it shows that with the improvement of dictionary 
discrimination ability, the classification performance of the 
dictionary learning framework also improves. The results 
indicate the potential of dictionary learning method in the 
application of medical image classification tasks.

4  Low‑rank Shared Dictionary Learning 
for Glaucoma Diagnosis

To demonstrate the availability of dictionary learning in 
medical image analysis, we apply it to glaucoma diagno-
sis task. Considering the high variability among glaucoma 
individuals, we propose to utilize low-rank shared dictionary 
learning(LRSDL) [32] method to availably capture discrimi-
native features and obtain more reasonable representation. 

Finally, the method achieves accuracy of 92.90% on RIM-
ONER2 datasets.

4.1  Computer‑Aided Glaucoma Diagnosis

Glaucoma is an irreversible chronic blinding fundus disease 
[33]. The optic nerve injury caused by glaucoma cannot be 
recovered and cured. Therefore, early diagnosis and timely 
intervention are the most effective ways to prevent and treat 
glaucoma [34]. In recent years, with the successful appli-
cation of computer-aided diagnosis (CAD) technology in 
clinical practice, the glaucoma recognition method based on 
computer vision technology has developed rapidly, and plays 
an indispensable role in the early diagnosis and automatic 
screening of glaucoma [35–37]. At present, the research 
of glaucoma recognition method based on computer-aided 
analysis mainly focuses on the detection and segmentation of 
optic disc and optic cup, and then the cup/disc ratio (CDR) is 
used as the classification criterion [38–40]. Although these 
methods have achieved good results, they still face the fol-
lowing challenges:

(1) The description of fundus features of glaucoma is inac-
curate and incomprehensive. The fundus characteristics 
of different types of glaucoma at different periods are 
various. Especially, some pathological characteristics 
are manifested outside the optic disc, such as atro-
phy around the optic disc and retinal nerve fiber layer 
defect. Therefore, it’s not comprehensive to identify 
glaucoma only according to CDR.

(2) Existing identification methods cannot cope with the 
high variability and extreme inhomogeneity of optic 
disc structure from fundus image across subjects.

To settle the above challenges, we extract the color, Gabor 
and Histogram of Gradient(HOG) features of the images to 
comprehensively describe the fundus characteristics. More 
specifically, we adopt LRSDL, which generates a shared 
dictionary and particular dictionary simultaneously, to deal 

Table 1  Classification results 
comparison of different methods 
on ADL dataset

Class Kidney Lung Spleen Method

Healthy Diseased Healthy Diseased Healthy Diseased

Healthy 0.8110 0.1890 0.7500 0.2500 0.6500 0.3500 SHIRC
0.8723 0.1277 0.9234 0.0766 0.8999 0.1001 DFDL
0.8809 0.1191 0.9509 0.0491 0.9064 0.0936 FCDFDL
0.8550 0.1450 – – – – ALSF

Diseased 0.1946 0.8054 0.1500 0.8500 0.1167 0.8833 SHIRC
0.1405 0.8595 0.0576 0.9424 0.0599 0.9401 DFDL
0.1311 0.8689 0.0375 0.9625 0.0409 0.9591 FCDFDL
0.1300 0.8700 – – – – ALSF
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with high variability and extreme heterogeneity among 
individuals.

4.2  Low‑rand Shared Dictionary Learning 
for Glaucoma Diagnosis

In practice, ophthalmologists mainly diagnose glaucoma by 
judging whether the fundus image from the patient has the 
pathological characteristics of glaucoma. In general, only a 
few small areas of the patient’s fundus image contain path-
ological features. In other words, different fundus images 
from healthy and glaucoma individuals not only possess 
distinct class-specific features but also share common pat-
terns. Based on this theory, we apply the Low-rank Shared 
Dictionary Learning (LRSDL) method [32] to glaucoma 
classification.

LRSDL model mainly contains two process: dictionary 
learning and classification. During the learning process, 
LRSDL introduces a shared dictionary D0 to the model based 
on FDDL method. With the addition of D0 , a sample Yi will 
be well represented by the collaboration of the particular dic-
tionary Di and the shared dictionary D0 . Formally, the total 
dictionary learned by the model is expressed as D� = [DD0] , 
and let X� = [XT , (X0)T ]T and X�

i
= [(Xi)

T , (X0
i
)T ]T . The dis-

criminative fidelity term L(Y, D, X) in (5) is redefined as:

where the shared dictionary is added to the reconstruction 
error term, but is excluded from the class-dictionary learn-
ing term. The Fisher-based discriminative coefficient term 
f(X) is described as:

where M0 is the mean vector of X0 columns, and the addi-
tional item forces the coefficients of all training samples 
represented via the shared dictionary to be similar, so that 
the contribution of the shared dictionary to the reconstruc-
tion of every sample is approximately the same. Finally, the 
objective function of the LRSDL is:

where the term ∥ D0 ∥∗ can constrain rank(D0) to be small 
to avoid the shared dictionary from containing the element 
of discriminative dictionary. Both the additional terms are 
crucial to improving the performance of dictionary learning 
model.

(7)
L�(Y ,D�,X�) =∥ Yi − DiX

i
i
− D0X

0
i
∥2
F

+ ∥ Yi − D�X�
i
∥2
F
+
∑

j≠i

∥ DjX
j

i
∥2
F

(8)f �(X�) = f (X)+ ∥ X0 −M0 ∥2
F

(9)
<D�,X�> = argmin

D,X

L�(Y ,D�,X�)

+ 𝛼 ∥ X� ∥1 +𝛽f
�(X�) + 𝛾 ∥ D0 ∥∗

After the dictionary construction, we first acquire the 
coefficient vector x′ for a new test sample y relied on the 
total dictionary D′ . Formally, x′ is calculated as follow:

Then, we extract the contribution of the shared dictionary 
before classification. That’s to say, the class label of y is 
determined by the particular dictionary. Formally, the clas-
sification scheme can be described as:

where y� = y − D0x
0 , and � ∈ [0, 1] is a preset weight for 

balancing the contribution of the two terms.
The whole implementation framework of our experiment 

is demonstrated as Fig. 2. It’s shown that the total framework 
is consisted of three distinguished parts: feature extraction, 
dictionary construction and glaucoma diagnosis. In feature 
extraction stage, in order to depict the changes of the optic 
disc for glaucoma accurately and comprehensively, this 
experiment comprehensively utilized color distribution, 
Gabor filtering and Histogram of Gradient (HOG) methods 
to describe the fundus image features from different aspects 
such as color, structure and texture. The features extracted 
from fundus images are shown as Fig. 3. The three features 
are combined at last to comprehensively describe fundus 
images in the form of vectors. In the dictionary construction 
stage, the obtained eigenvectors are fed to LRSDL model to 
achieve dictionary learning. Considering that different fun-
dus images not only possess distinct class-specific features 
but also usually share common patterns with each other, 
LRSDL model gets a particular and shared dictionary at 
the same time in the dictionary learning stage. This way 
the fundus image can be described more reasonably. In the 
classification stage, the test samples are represented by the 
combined dictionary and its sparse coefficient is obtained. 
Finally, the classification criterion adds the intra-class dis-
tance of the coefficient on the basis of reconstruction error. 
Specially, the reconstruction error is calculated with shared 
dictionary excluded.

4.3  Experiments and Results

The experiment is conducted on a publicly available glau-
coma image dataset, named RIM-ONE R2, which includes 
455 images from different individuals, 255 from healthy 
individuals and 200 from patients with glaucoma at different 
stages. In the experiment, 150 images are randomly selected 
from healthy individuals and glaucoma patients respectively 
as training datasets, and the rest are used as test samples. As 

(10)
x� = argmin

x�
∥ y − D�x� ∥2

2
+� ∥ x� ∥1

+ � ∥ x0 − m0 ∥2
2

(11)argmin
1≤i≤C

(� ∥ y� − Dix
i ∥2

2
+(1 − �) ∥ x − mi ∥

2
2
)
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for dictionary construction, the shared dictionary contains 
10 dictionary atoms, each particular dictionary contains 
60 words, and finally, the whole dictionary contained 130 
words.

For evaluation, we employ three evaluation criteria 
to measure the performance of our method, including: 
Sensitivity = TP∕(TP + FN) , Specificity = TN∕(TN + FP) , 
and Accuracy = (TP + TN)∕(TP + TN + FN + FP) , where 
TP and TN denote the number of true positives and true 
negatives, respectively, and FP and FN denote the number 
of false positives and false negatives, respectively. Sensitiv-
ity refers to the proportion of the samples actually suffer-
ing from glaucoma that are correctly recognized, which is 

equivalent to the ability of the algorithm to recognize glau-
coma. Specificity represents the ability of the algorithm to 
recognize healthy samples. Accuracy is the proportion of all 
test samples correctly classified.

We conduct ten times experiments randomly on the 
dataset, and the best results reaches accuracy of 0.9290, 
sensitivity of 0.9600, and specificity of 0.9143. The experi-
mental results demonstrate that our method is capable of 
distinguishing glaucoma. To prove the competitiveness of 
our method, we compare our method with several existing 
state-of-the-art glaucoma screening baselines. As shown in 
Table 2, our method obtains higher accuracy of 0.9290 based 
on RIM-ONE R2 dataset, which increases the accuracy by 

Fig. 2  The overall framework of the experiment

Fig. 3  Feature extraction on fundus images. a Multi-direction gabor feature highlight the texture information of the image; b extract the informa-
tion of the three channels of RGB respectively; c HOG feature focus on capturing the edge information of blood vessels
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10.48% compared with [41], and our algorithm can get better 
results on fewer datasets compared with [42]. This mainly 
profit from the strong expressive power and discrimination 
power of the dictionary learned by LRSDL model.

5  Conclusion

Dictionary learning methods have emerged as one of the 
most successful methods for medical image analysis. In 
recent years, numerous studies have proved their practi-
cal value. This paper summarizes some main concepts and 
methods of dictionary learning and reviews some of the 
published research on the application of dictionary learning 
methods to de-noising and classification for medical images. 
Most of these studies have obtained very good results. 
Especially, we apply low-rank shared dictionary learning to 
achieve accurate glaucoma diagnosis. The practice of dic-
tionary learning method proves its prospect in the field of 
medical image analysis.

Funding This study was funded by NSFC (Grant Numbers 61702558, 
61602527), Hunan Natural Science Foundation (Grant Numbers 
2017JJ3411, 2017JJ3416), Primary Research & Developement 
Plan of Hunan Province (Grant Number 2017WK2074), National 
Key Research and Development Program of China (Grant Num-
ber 2017YFC0840104), China Scholarship Council (Grant Number 
201806375006).

Compliance with Ethical Standards 

Conflict of interest The author declares that he has no conflict of inter-
est.

References

 1. Khan A, Doucette JA, Cohen R, Lizotte DJ (2012) Integrating 
machine learning into a medical decision support system to 
address the problem of missing patient data. In: 2012 11th inter-
national conference on machine learning and applications, Boca 
Raton, FL, pp 454–457

 2. Seixas JL, Barbon S, Mantovani RG (2015) Pattern recognition 
of lower member skin ulcers in medical images with machine 
learning algorithms. In: 2015 IEEE 28th international sympo-
sium on computer-based medical systems, Sao Carlos, pp 50–53

 3. Mothkur R, Km P (2018) Machine learning will transfigure 
medical sector: a survey. In: 2018 international conference on 
current trends towards converging technologies (ICCTCT), 
Coimbatore, pp 1–8

 4. Song L, Peng J (2012) Dictionary learning research based on 
sparse representation. In: 2012 international conference on com-
puter science and service system, Nanjing, pp 14–17

 5. Zhang CZ, Zhao L (2011) Image de-noising based on learned 
dictionary. In: 2011 International conference on multimedia 
technology, Hangzhou, pp 3101–3104

 6. Yu F, Chen Y, Luo L (2013) CT image denoising based on 
sparse representation using global dictionary. In: 2013 ICME 
International conference on complex medical engineering, Bei-
jing, pp 408–411

 7. Chen Y, Yin X, Shi L et al (2013) Improving abdomen tumor 
low-dose CT images using a fast dictionary learning based pro-
cessing. Phys Med Biol 58:5803–5820

 8. Shi L, Chen Y, Shu H, Luo L, Toumoulin C, Coatrieux J (2014) 
Low-dose CT image processing using artifact suppressed dic-
tionary learning. In: 2014 IEEE 11th international symposium 
on biomedical imaging (ISBI), Beijing 2014, pp 1127–1130

 9. Shan B, Hao W, Zhao R (2012) Infrared image de-noising based 
on K-SVD over-complete dictionaries learning. In: 2012 5th 
international congress on image and signal processin, Chong-
qing 2012, pp 316–320

 10. Ji J, Ren F, Ji H, Yao Y, Hou G (2018) Generalised non-locally 
centralised image de-noising using sparse dictionary. IET Image 
Process 12(7):1072–1078

 11. Vu TH, Mousavi HS, Monga V, Rao G, Rao UKA (2016) His-
topathological Image Classification Using Discriminative Fea-
ture-Oriented Dictionary Learning. IEEE Trans Med Imaging 
35(3):738–751

 12. Liu M et al (2011) Sparse classification for computer aided 
diagnosis using learned dictionaries. Proc Med Image Comput 
Comput Assist Interv (MICCAI) 6893:41–48

 13. Srinivas U, Mousavi HS, Monga V, Hattel A, Jayarao B (2014) 
Simultaneous sparsity model for histopathological image 
representation and classification. IEEE Trans Med Imag 
33(5):1163–1179

 14. Bai J, Song S, Fan T et al (2018) Medical image denoising 
based on sparse dictionary learning and cluster ensemble. Soft 
Comput. https ://doi.org/10.1007/s0050 0-017-2853-7

 15. Sun X, Nasrabadi NM, Tran TD (2015) Task-driven diction-
ary learning for hyperspectral image classification with struc-
tured sparsity constraints. IEEE Trans Geosci Remote Sens 
53(8):4457–4471

 16. Diamant I, Klang E, Amitai M, Konen E, Goldberger J, 
Greenspan H (2017) Task-driven dictionary learning based 
on mutual information for medical image classification. IEEE 
Trans Biomed Eng 64(6):1380–1392

 17. Tang HZ, Li X, Zhang XG, Zhang DB, Wang X, Mao LZ (2018) 
Discriminative feature-oriented dictionary learning method with 
Fisher criterion for histopathological image classification. Acta 
Autom Sin 44(10):1842–1853

 18. Vu TH, Mousavi HS, Monga V, Rao UKA, Rao G (2015) DFDL: 
Discriminative feature-oriented dictionary learning for histo-
pathological image classification. In: IEEE 12th international 
symposium on biomedical imaging (ISBI), New York, NY, pp 
990-994

 19. Srinivas U, Mousavi HS, Jeon C, Monga V, Hattel A (2013) 
SHIRC: A simultaneous sparsity model for histopathologi-
cal image representation and classification. In: Proceedings of 

Table 2  Performance comparison between LRSDL and existing 
methods (No. represents number of image from dataset; Acc., Sen. 
and Spec. represent the accuracy, sensitivity and specificity respec-
tively.)

Method Dataset (No.) Acc. Sen. Spec.

RF [41] RIM-ONE R2 (455) 0.8242 0.8706 0.7650
Drishti-GS (101) 0.7843 0.9571 0.7073

DENet [42] SCES (1676) 0.8429 0.8478 0.8380
SINDI (5783) 0.7495 0.7876 0.7115

Our LRSDL RIM-ONE R2 (455) 0.9290 0.9600 0.9143

Author's personal copy

https://doi.org/10.1007/s00500-017-2853-7


A Survey of Dictionary Learning in Medical Image Analysis and Its Application for Glaucoma…

1 3

the IEEE international symposium biomedical imaging, pp 
1118–1121

 20. Li X, MongaV , Rao UKA (2018) Analysis-synthesis model learn-
ing with shared features: a new framework for histopathological 
image classification. In: 2018 IEEE 15th international symposium 
on biomedical imaging (ISBI 2018), Washington, DC, pp 203–206

 21. Roy S et al (2015) Subject-specific sparse dictionary learning 
for atlas-based brain MRI segmentation. IEEE J Biomed Health 
Inform 19(5):1598–1609

 22. Shi Y, Wang D, Liu Z (2015) Hippocampus segmentation in MR 
images using sparse patch representation and discriminative dic-
tionary learning. In: IET international conference on biomedical 
image and signal processing (ICBISP 2015), Beijing, pp 1–5

 23. Guo Y, Zhan Y, Gao Y, Jiang J, Shen D (2013) MR prostate seg-
mentation via distributed discriminative dictionary (DDD) learn-
ing. In: 2013 IEEE 10th international symposium on biomedical 
imaging, San Francisco, CA, pp 868–871

 24. Dong Y, Hansen PC, Kjer HM (2018) Joint CT reconstruction and 
segmentation with discriminative dictionary learning. IEEE Trans 
Comput Imag 4(4):528–536

 25. Jin P, Ye DH, Bouman CA (2015) Joint metal artifact reduction 
and segmentation of CT images using dictionary-based image 
prior and continuous-relaxed potts model. In :2015 IEEE inter-
national conference on image processing (ICIP), Quebec City, 
QC, pp 798–802

 26. Onofrey JA, Staib LH, Papademetris X (2019) Segmenting the 
brain surface from CT images with artifacts using locally ori-
ented appearance and dictionary learning. IEEE Trans Med Imag 
38(2):596–607

 27. Wright J, Yang A, Ganesh A, Sastry S, Ma Y (2009) Robust face 
recognition via sparse representation. IEEE Trans Pattern Anal 
Mach Intell 31:210–227

 28. Aharon M, Elad M, Bruckstein A (2006) K-SVD: an algorithm 
for designing overcomplete dictionaries for sparse representation. 
IEEE Trans Signal Process 54(11):4311

 29. Zhang Q, Li B (2010) Discriminative K-SVD for dictionary learn-
ing in face recognition. In: 2010 IEEE computer society confer-
ence on computer vision and pattern recognition, San Francisco, 
CA, pp 2691–2698

 30. Jiang Z, Lin Z, Davis LS (2013) Label consistent K-SVD: learning 
a discriminative dictionary for recognition. IEEE Trans Pattern 
Anal Mach Intell 35(11):2651–2664

 31. Yang M, Zhang L, Feng X, Zhang D (2011) Fisher discrimi-
nation dictionary learning for sparse representation. In: 2011 

International conference on computer vision, Barcelona, pp 
543–550

 32. Vu TH, Monga V (2017) Fast low-rank shared dictionary 
learning for image classification. IEEE Trans Image Process 
26(11):5160–5175

 33. Roodhooft J (2002) Leading causes of blindness worldwide. Bull 
Soc Belge Ophtalmol 283:19–25

 34. Michelson G, Hornegger J, Wärntges S, Lausen B (2008) The 
papilla as screeningparameter for early diagnosis of glaucoma. 
Deutsches Arzteblatt Int 105:334–35

 35. Haleem MS, Han L, Hemert JV, Li B (2013a) Automatic extrac-
tion of retinal features from colour retinal images for glaucoma 
diagnosis: a review. Comput Med Imag Graph 37:581–596

 36. Khalil T, Khalid S, Syed AM (2014) Review of machine learning 
techniques for glaucoma detection and prediction. In: Science and 
information conference, London, pp 438–442

 37. Nawaldgi S (2016) Review of automated glaucoma detection tech-
niques. In: 2016 international conference on wireless communica-
tions, signal processing and networking (WiSPNET), Chennai, pp 
1435–1438

 38. Yin F et al (2012) Automated segmentation of optic disc and optic 
cup in fundus images for glaucoma diagnosis. In: 2012 25th IEEE 
international symposium on computer-based medical systems 
(CBMS), Rome, pp 1–6

 39. Cheng J, Yin F, Wong DWK, Tao D, Liu J (2015) Sparse dissim-
ilarity-constrained coding for glaucoma screening. IEEE Trans 
Biomed Eng 62(5):1395–1403

 40. Poshtyar A, Shanbehzadeh J, Ahmadieh H (2013) Automatic 
measurement of cup to disc ratio for diagnosis of glaucoma on 
retinal fundus images. In: 2013 6th international conference on 
biomedical engineering and informatics, Hangzhou, pp 24–27

 41. Zhao R, Chen Z, Duan X, Chen Q, Liu K, Zhu C (2017) Auto-
mated glaucoma detection based on multi-channel features 
from color fundus images. J Comput Aided Des Comput Graph 
29:998–1006

 42. Fu H, Cheng J, Xu Y, Zhang C, Wong DWK, Liu J, Cao X (2018) 
Disc-aware ensemble network for glaucoma screening from fun-
dus image. IEEE Trans Med Imag 37(11):2493–2501

Publisher’s Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Author's personal copy


	A Survey of Dictionary Learning in Medical Image Analysis and Its Application for Glaucoma Diagnosis
	Abstract
	1 Introduction
	2 Review of Dictionary Learning Methods
	2.1 Discriminative K-SVD
	2.2 Label Consistent K-SVD
	2.3 Fisher Discrimination Dictionary Learning

	3 Applications in Medical Image Analysis
	3.1 CT Image De-noising
	3.2 Histopathological Image Classification

	4 Low-rank Shared Dictionary Learning for Glaucoma Diagnosis
	4.1 Computer-Aided Glaucoma Diagnosis
	4.2 Low-rand Shared Dictionary Learning for Glaucoma Diagnosis
	4.3 Experiments and Results

	5 Conclusion
	References




