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 A novel dual-curriculum learning paradigm (SEDC) is proposed for the 

first time to handle two types of data imbalances in glaucoma diagnosis 

by feature space augmenting; 

 An effective self-ensemble learning framework is developed to 

reinforce the discriminative ability of feature representation for the rare 

cases by feature distillation; 

 A contrastive re-balanced loss is constructed to jointly learn the 

discriminative representation and the powerful classifier by integrating 

supervised contrastive learning into the sample re-balancing strategy. 
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A B S T R A C T

Glaucoma diagnosis often suffers from two types of data imbalances: 1) class imbal-
ance, i.e., the non-glaucoma majority cases occupy most of the data; 2) rare cases,
i.e., few cases present the uncommon retinopathy e.g., bayoneting or physiologic cup-
ping. This dual-imbalances make glaucoma diagnosis model easy to be dominated by
the majority cases but cannot correctly classify the minority and/or rare ones. In this
paper, we propose an adaptive re-balancing strategy in the feature space, Self-Ensemble
Dual-Curriculum learning (SEDC), to improve the glaucoma diagnosis on imbalanced
data by augmenting feature distribution with feature distilling and feature re-weighting.
Firstly, the self-ensembling (SEL) is developed to reinforce the discriminative ability
of feature representations for the minority class and rare cases by distilling the fea-
tures learned from the abundant majority cases. Secondly, the dual-curriculum (DCL)
is designed to adaptively re-weight the imbalanced data in the feature space to learn
a balanced decision function for accurate glaucoma diagnosis. Benefiting from feature
distilling and re-weighting, the proposed SEDC fairly represents fundus images, regard-
less of the majority or rare cases, by augmenting the feature distribution to obtains the
optimal decision boundary for accurate glaucoma diagnosis on the imbalanced dataset.

Experimental results on three challenging glaucoma datasets show that our SEDC
successfully delivers accurate glaucoma diagnosis by the adaptive re-balancing strategy,
with the average mean value of Accuracy 0.9712, Sensitivity 0.9520, Specificity 0.9816,
AUC 0.9928, F2-score 0.9547. Ablation and comparison studies demonstrate that
our method outperforms state-of-the-art methods and traditional re-balancing strate-
gies. The experiment also shows that the adaptive re-balancing strategy proposed in
our method provides a more effective training approach with optimal convergence per-
formance. It endows our SEDC a great advantage to handle the disease diagnosis on
imbalanced data distribution.

c© 2021 Elsevier B. V. All rights reserved.

1. Introduction

Although computer-aided diagnosis (CAD) makes a se-
quence of advances on glaucoma diagnosis (Haleem et al.,

∗Corresponding author
e-mail: shuoli@gmail.com (Shuo Li)

2013; Zhao and Li, 2020; Fu et al., 2018a; Zhao et al., 2019c),
the data imbalance exhibited in fundus images leads to the in-
accurate performance of glaucoma diagnosis in clinical appli-
cation. Fundus images always have imbalanced distribution,
i.e., non-glaucoma class claims most of the samples, while other
classes have relatively few samples (Fig.1). Data imbalance
makes CAD models prefer the dominant samples but perform
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strategy in feature space by feature re-weighting and distilling
to optimize the decision boundary.

Augmented features
By feature re-weighting

Augmented features 
by feature distilling

decision 
boundary

Majority class

Minority class

Fig. 1: Fundus images follow two types of data imbalances: (a) Class im-
balance. Sample frequency exhibits an imbalanced class distribution where
non-glaucoma samples dominate while glaucoma class has relatively few sam-
ples; (b) Rare cases with uncommon retinopathy. Few cases exhibit the un-
common retinopathy features such as bayoneting, which makes the accurate
diagnosis hard. Exiting methods (c) often leads to the inaccurate performance
of glaucoma diagnosis because of the distortion of feature distribution. The
proposed SEDC (d) conducts an adaptive re-balancing strategy to obtain the
accurate performance by augmenting feature distribution with feature distilling
and feature re-weighting.

poorly on others because the imbalanced measure of the empir-
ical risk minimization (Zhao et al., 2020). When dealing with
such fundus data, existing deep learning methods are infeasible
to achieve outstanding diagnosis accuracy and miss the accu-
rate diagnosis when facing the cases with rare conditions due to
both the data-hungry limitation of deep learning the imbalanced
distribution of training datasets.

There are two types of data imbalances for glaucoma di-
agnosis with fundus images: 1) class imbalance. The non-
glaucoma cases occupy most of the data, whereas glaucoma-
tous have relatively few samples (Fig.1(a)). This class imbal-
ance incurs model-bias classification towards the majority non-
glaucoma class and leads to a high false negative. 2) Rare
cases. There are fewly rare cases (defined as hard sample in
our method) exhibiting the uncommon retinopathy such as bay-
oneting and physiologic cupping, which is under-represented
by the CAD models. In Fig.1(b), most of glaucomatous fun-
dus images are related to the common retinopathy features of
optic disc changes, while rarely few cases present the clinical
features as bayoneting or haemorrhage. Therefore, deep learn-
ing models are easy to be over-fitted to assess glaucoma based
on optic disc appearance but hard to accurately recognize cases
with other rare retinopathy features. These imbalanced data dis-
tort the overall feature distribution, compromise the discrimina-
tive ability of CNN features, and lead to an unaccepted false in
some cases (Li et al., 2018).

The impact of data imbalance on the learned feature space is
investigated by conducting an empirical study. After the fea-
ture learning with baseline and the proposed model, the learned
features are visualized with t-SNE (Fig.2), which generates the
projection of the features with lower dimension to demonstrate
the distortion of feature distribution. As observed in Fig.2, the
normal samples and the glaucoma cases present different dis-

Training data Valuation data

Baseline EGDCL SEDC

137:60

137:12

Baseline EGDCL SEDC

Imbalance 
ratio

Fig. 2: The imbalanced training data seriously disturbs the learning of feature
representation, leading to the distortion of feature distribution. The features,
extracted by three different models in the embedding layer, are visualized with
t-SNE (Van der Maaten and Hinton, 2008) on the RIM-ONE dataset. For the
baseline model, it is hard to separate the glaucoma samples (red) from the nor-
mal cases (green) because glaucoma class is narrowly distributed. The nar-
rowed feature distribution leads to the distortion of the original feature distribu-
tion. Our SEDC is developed to augment the distorted feature distribution via
feature re-weighting and feature distilling, and make the best separation with a
distinct margin in the feature distribution.

tribution patterns. The normal samples has a relatively large
spatial span, while the glaucoma cases has a significantly small
spatial span and is embedded into the large span of the normal
class. This uneven distribution between head and tail classes
distorts the overall feature distribution, and leads to the chal-
lenges of separating the rare glaucoma class from normal class.

The prominent methods for dealing with the data imbalance
are class re-balancing strategies (He and Garcia, 2009). Gener-
ally, the class re-balancing methods adjust the network training
by re-sampling (He and Garcia, 2009; Byrd and Lipton, 2019;
More, 2016) or cost-sensitive re-weighting (Lin et al., 2017;
Haarburger et al., 2019; Cui et al., 2019; Cao et al., 2019) to
promote the performance of classification. Those methods ad-
just the training strategy of the deep neural network to make
it closer to the test distributions. Thus, the class re-balancing
methods benefit the updating of classifier’s weights and pro-
mote the accurate classification of imbalanced datasets.

However, class re-balancing strategy still suffers from three
crucial drawbacks when used in glaucoma diagnosis on the
imbalanced dataset: 1) Difficult to define the re-balancing
weight. Existing methods often rely on prior knowledge to
define the re-balancing weight for each sample in the imbal-
anced data distribution, which lacks an adaptive instrument to
adjust the discriminative ability to obtain the optimal decision-
making in glaucoma diagnosis. The trained model is at the
risk of blindly over-fitting the rare cases and under-fitting the
whole data distribution. 2) Powerless to rare cases. Methods
equipped with a re-balancing strategy can not accurately rec-
ognize the rare cases with retinopathy such as bayoneting or
hemorrhage. Those rare cases, named as hard samples here, are
often ignored by the training strategy as noise or outliers for a
favorable statistical performance. However, that ignoring leads
to low accuracy in practice testing, especially for the glaucoma
patient at its early stage. 3) Harmful to representation learn-
ing. The re-balancing strategy enhances the classification but
brings unexpected damage to the representation ability of the
neural networks due to the distortion of the original distribu-
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tion. The latest research (Kang et al., 2019; Zhou et al., 2020)
shows the damage of sample re-balancing in computer vision.

Curriculum learning (Bengio et al., 2009) has the potential
to address the data imbalances in glaucoma diagnosis by orga-
nizing the training data from easy to hard and from imbalanced
to balanced (Wang et al., 2019; Zhao et al., 2020). Curriculum
learning benefits the effectiveness of model training inspired by
the learning proceeds of humans. Curriculum learning highly
organizes the training process based on the predefined curricula
settings to learn from easy to hard. The learning paradigm has
been empirically demonstrated to be effective in achieving out-
standing performance for medical image analysis (Haarburger
et al., 2019; Jiménez-Sánchez et al., 2019)

However, applying curriculum learning directly into glau-
coma diagnosis to deal with the two types of data imbalances
is challenging due to 1) The distortion of feature distribu-
tion. The glaucoma samples occupy a relatively narrow span
in the feature space compared with the non-glaucoma cases be-
cause of the lack of sufficient samples (e.g., Fig.1(c)). This un-
even feature distribution compromises the discriminative abil-
ity of the learned features and leads to poor classification per-
formance. 2) Pre-defined curriculum. Pre-defining a fixed
curriculum to order the fundus images with its difficultness is
not realistic in clinical applications. However, there is no ex-
isting method to update the curriculum adaptively along with
model training for imbalanced data analysis. 3) Isolated fea-
ture learning. The curriculum learning only organizes the
training process by ordering the training sequence while ignores
the feature distilling between majority class and minority class.
The traditional curriculum learning can not adjust the learning
focus in different training stages, leading to isolated feature rep-
resentation between different classes.

In this paper, we propose a self-ensemble dual-curriculum
learning framework (SEDC, Fig.3) to achieve accurate glau-
coma diagnosis on the imbalanced dataset. The proposed SEDC
innovatively conducts an adaptive re-balancing strategy in the
feature space to optimize the decision boundary (red dotted line
in Fig.3) by augmenting the feature distribution (i.e., with fea-
ture distilling and re-weighting). Firstly, the self-ensembling
(SEL) is developed to reinforce the discriminative ability of
feature representation for the minority class and rare cases by
distilling the feature representations learned from the abundant
majority class. Secondly, the dual-curriculum learning (DCL)
is designed to learn a balanced decision function by adaptiv-
elly feature re-weighting in different training stages for the op-
timization of the decision boundary. The re-weighted features
distribution moves the decision boundary toward the optimal
direction by balancing the training contributions between the
majority class, i.e., non-glaucoma and minority class i.e., glau-
coma. The proposed SEDC is significant to inherit the ad-
vantages of the self-ensemble learning that progressively re-
inforce the discriminative ability of feature representation for
rare cases and the curriculum learning that gradually adjust the
re-weighting factors to learn a balanced decision function for
accurate glaucoma diagnosis.

The proposed SEDC is capable of achieving effective glau-
coma diagnosis on imbalanced dataset due to three advantages:

Teacher Student

Loss 
function

SEL

DCL
gradient

Majority class

Minority class

Output feature distribution and decision 
boundary after nth iteration

decision 
boundary

Feature re-weighting with DCL to 
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Fig. 3: The proposed SEDC tackles two types of data imbalances in glaucoma
diagnosis by augmenting the feature distribution with feature distilling and re-
weighting. The feature distribution is augmented by 1) the self-ensemble learn-
ing (SEL) to reinforce the discriminative ability of feature representation for the
rare cases with the distilled features learned from the majority abundant sam-
ples; 2) the dual-curriculum learning (DCL) to conduct feature re-weighting to
learn a balanced decision function to move the boundary to the optimal direc-
tion.

1) The proposed self-ensemble framework iteratively expands
the feature distribution of the minority class and rare cases
to represent the imbalanced data in feature space by distilling
the elementary knowledge from easy to hard and from imbal-
anced to balanced. 2) The dual-curriculum learning helps the
model learn a balanced decision function in the feature space
by adaptive feature re-weighting in different training stages,
which gradually moves the decision boundary toward the op-
timal direction for accurate glaucoma diagnosis. 3) The pro-
posed SEDC conducts an adaptive sample selection strategy by
progressively paying attention to each sample with different im-
portance weights to learn the discriminative feature representa-
tions from majority easy samples and imbalanced hard ones.

Our proposed SEDC achieves top performance on three most
competitive glaucoma diagnosis datasets with the two imbal-
ance issues, i.e., LAG (Li et al., 2019), REFUGE (Orlando
et al., 2020) and RIM-ONE (Fumero et al., 2011). The proposed
self-ensemble dual-curriculum learning paradigm can benefits
both accurate classification and effective training of long-tailed
recognition in other areas. The main contributions of this work
are summarized as follows:

• Dual-curriculum learning paradigm (SEDC) is proposed
for the first time to handle data imbalances in glaucoma
diagnosis by gradually augmenting the feature distribution
via feature distilling and feature re-weighting.

• An effective self-ensemble learning is developed to rein-
force the discriminative ability of minority class and rare
cases by distilling feature from majority class, which pro-
vides a new learning paradigm for balanced deep learning.

• The contrastive re-balanced loss is developed to jointly
learn the discriminative representation and the powerful
classifier by integrating supervised contrastive loss into the

                  



4 Rongchang Zhao et al. / Medical Image Analysis (2021)

sample re-balancing strategy.

In this work, we advance our preliminary attempt on oph-
thalmic disease diagnosis with imbalanced data (Zhao et al.,
2020) in the following aspects: (1) conduct self-ensemble
framework to boost the performance of glaucoma diagnosis on
the rarely hard samples; (2) contrastive re-balanced loss func-
tion to learn the optimal discriminative feature representations;
(3) carry out more extensive experiments on performance anal-
ysis and comparisons.

The rest of this paper is organized as follows: In Section 2 we
first introduce the related works, and then we give the detailed
presentation of our proposed methodology and the algorithm
in Section 3. Experimental configurations and dataset details
are introduced in Section 4 and results analysis are presented in
Section 5. Section 6 concludes the paper.

2. Related work

Automated glaucoma diagnosis: The success of machine
learning has benefited the computer-aided glaucoma diagno-
sis (Schacknow and Samples, 2010; Zhao and Li, 2020; Zhao
et al., 2019c; Fu et al., 2018a). Prior works on computer-aided
glaucoma diagnosis devoted to learning a robust classifier by
designing the hand-crafted features like texture, higher-order
spectra, wavelet-based features. Those methods consider fea-
ture embedding and classifier learning individually, thus leads
to lower classification accuracy. With the development of deep
learning, modern methods shed new light on the automated
glaucoma diagnosis with deep learning models in the end-to-
end manner(Chen et al., 2015a,b). This type of automated glau-
coma diagnosis method employs CNNs and GANs in optic disc
segmentation (Fu et al., 2018a; Haleem et al., 2013), medical
indices estimation (Zhao and Li, 2020; Zhao et al., 2019a,b)
or ONH assessment (Liao et al., 2019; Li et al., 2019) to pro-
mote the performance of glaucoma diagnosis. The success of
computer-aided glaucoma diagnosis is undoubtedly inseparable
to the advantages of deep learning models, which enable the
CAD with the power capable of feature representations from
collected training datasets.
Balanced data learning: Both image classification (Ren et al.,
2018; Sarafianos et al., 2018) and object detection (Lin et al.,
2017; Jin et al., 2018) face a massive data imbalance when
learning the model from the practical datasets. Data imbalance
refers to a disproportionate ratio of observations among the dif-
ferent class or/and disease severity, leading to inefficient and
extensive redundancy training due to the imbalanced dataset.
Re-balancing training methods fall into two categories: 1) data
re-sampling (He and Garcia, 2009; Chawla et al., 2002; Geirhos
et al., 2018; Li and Vasconcelos, 2019), which choosing the
suitable proportion of data to train a network, including over-
sampling adds repeated samples from minor classes, and under-
sampling removes random samples. Data re-sampling often
leads to either over-fitting or under-fitting. 2) Cost-Sensitive
learning (Lin et al., 2017) through elaborately designing train-
ing curriculums or learning losses that assigns a weight to each
sample and minimizing the weighted loss function (Ren et al.,
2018). Besides, hard negative mining samples hard samples

during training (Shrivastava et al., 2016). Unfortunately, to our
best knowledge, no work has been reported to tackle the special
issue of data imbalances in medical diagnosis originating from
both class imbalance and rare hard samples.
Mean-teacher mechanism: Mean-teacher framework (Tar-
vainen and Valpola, 2017) is a self-ensembling model designed
for the classification task of natural images. It typically con-
sists of two models, i.e., student model and teacher model, with
the same architecture. In the training process, teacher model
is trained with the back-propagation algorithm by designing
various loss functions, while weights of student model are up-
dated as exponential moving average (EMA) of the weights of
teacher model. Therefore, the mean-teacher framework con-
ducts weights ensembling of teacher model at different training
process to help build a more reliable student model to produce
consistency targets and be adopted in various medical applica-
tions (Liu et al., 2020; Huo et al., 2020).
Margin-based softmax loss: Softmax loss is the commonly
used loss function in classification problems by combining a
fully connected layer, softmax function, and cross-entropy loss.
However, the learned features with original softmax loss are not
sufficiently discriminative for the classification problems, espe-
cially images with the various appearance and mixed features.
To directly enhance the feature discrimination, several margin-
based softmax loss and contrastive loss functions (Liu et al.,
2016; Wang et al., 2018b; Liu et al., 2019) have been proposed
where a margin function is carefully designed to enforce greater
intra-class compactness and inter-class discrepancy. Recently,
angular margin (A-softmax) (Liu et al., 2017), additive margin
(AM-Softmax) (Wang et al., 2018a), additive angular margin
(ArcSoftmax) (Deng et al., 2019) are proposed and achieved
promising results on face recognition.
Curriculum learning: Curriculum learning (Bengio et al.,
2009) represents a learning regime inspired by the learning pro-
ceeds of humans that gradually proceeds from easy to more
complex or hard to deal with the samples imbalance. Its main
hypothesis is that the order in which samples are presented to
an iterative optimizer is important. Novel variants of curriculum
learning include self-paced learning (Jiang et al., 2015) where
the curriculum is automated learned. Such approach has been
adopted to tackle data imbalance in the medical image analysis,
where the curriculum is updated by letting the learner focus on
medical knowledge (Jiménez-Sánchez et al., 2019; Jesson et al.,
2017).
Contrastive learning: The contrastive learning has recently
become a prominent technique in unsupervised learning (He
et al., 2020; Grill et al., 2020; Chen et al., 2020), achieving
state-of-the-art performance. The contrastive learning learns
representation by contrasting positive pairs against negative
pairs. Various frameworks use different apporach to study the
role of positive pairs to learn the discriminative feature rep-
resentation, including SimCLR (Chen et al., 2020) uses aug-
mented views of other items in a minibatch as negative samples,
Moco (He et al., 2020) uses a momentum updated memory bank
of old negative representations to enable the use of very large
batches of negatives.

In fundus images, the testing samples are usually disjoint
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Fig. 4: The proposed SEDC consists of three parts: self-ensemble learning
(SEL) distills features learned from majority class to reinforce the discrim-
inative representation of minority glaucoma class, dual-curriculum learning
(DCL) re-weight each given sample xi in feature space with the adaptive weight
factor αi and βi, contrastive re-balanced loss function exerts cost-sensitive
modulation on the loss function with the re-balanced training strategy and re-
weighting feature maps for a strong teacher network.

from the training set because of the inhomogeneous appear-
ances of glaucomatous samples in different disease stages.
However, those loss functions do not explicitly emphasize each
sample according to its diagnosis difficulty and imbalanced
class. Therefore, the proposed SEDC learns the discriminative
feature presentation of each sample by leveraging the merit of
curriculum learning and contrastive learning, which gradually
emphasizes the samples with different diagnosis difficulty and
imbalanced class.

3. Methodology

The proposed self-ensemble dual-curriculum learning
(SEDC, Fig.4) conducts a mean-teacher framework (teacher
and student networks) with curriculum learning for glaucoma
diagnosis on imbalanced data. In SEDC, the self-ensemble
learning (SEL) distills the feature learned from the majority
class to reinforce the discriminative ability of feature repre-
sentation for minority class and rare cases. In addition, the
dual-curriculum learning (DCL) is designed to adaptively
calculate the weighting factors online for feature re-weighting,
which exerts exact modulation on the imbalanced data in the
feature space to learn a balanced cost and optimal separating
hypersurface to partition the underlying samples into two
classes. Benefited from the momentum updating of the student
network, SEDC inherits the advantages of ensemble learning
to progressively boost the network’s prediction with the newly
learned knowledge and encourage the subsequent model to be
consistent with the ground truth.

3.1. Overview of the proposed framework

As shown in Fig.4, our SEDC consists of three components:
self-ensemble learning (SEL) distills the features learned from
majority non-glaucoma class to reinforce the discriminative
ability of feature representation for the minority glaucoma class
and rare cases, dual-curriculum learning (DCL) conducts the
feature re-weighting with adaptive-updated weighting factors
αi and βi for the given sample xi to learn the optimal decision

boundary by balancing the training contributions between ma-
jority class and minority class, contrastive re-balanced loss
function exerts cost-sensitive modulation on the loss function
with the re-balanced training strategy and re-weighting feature
maps for a strong teacher network. The self-ensemble learn-
ing is conducted with the mean-teacher structure (Tarvainen and
Valpola, 2017), where the teacher network acts as the base net-
work trained with the re-balanced loss function whereas stu-
dent network plays a role of ensemble model updated with the
teacher network for consistent prediction on the imbalanced
data. After each iteration, parameters of the student network
are updated with exponential moving average (EMA) method to
ensemble the model of newly trained teacher and historical stu-
dent. The teacher network is trained with the re-balanced loss
function, while the student network does not participate in the
back-propagation. In the inference stage, the test images are
inputted into the student network for the prediction.

Owing to the self-ensemble dual-curriculum learning, data
imbalances can be counteracted in an adaptive and ensemble
manner. In the training, the SEL reinforces the discriminative
ability of feature representation for the minority glaucoma class
and rare cases by distilling features learned from the major-
ity class, and the DCL updates the weight factor online with
the dual-curriculum and learns a balanced optimization of the
decision boundary toward the optimal direction by feature re-
weighting in the loss function. As the iteration goes on, the
model becomes closer to the normal distribution of training
data, and the prediction in the ensemble student network gets
more accurate. In the test phase, the test images are sent to the
student network to achieve the glaucoma diagnosis.

3.2. Self-ensemble learning for feature distilling

Self-ensemble learning (Fig.4) is developed to reinforce the
discriminative ability of feature representation for the minority
class by reusing the features learned from the abundant majority
cases. The self-ensemble network is consisted of two networks
with the same architecture (teacher and student networks). The
teacher network is trained with the re-balanced loss function
(detailed in Sec.3.4) to gradually optimize the decision bound-
ary. In contrast, the student network plays an ensemble model
to enable the discriminative representation for all the samples,
regardless of majority non-glaucoma class or minority glau-
coma class. Both the teacher and student network share the
same architecture, named as attention network (Fig.5) (Zhao
et al., 2020). After each back-propagation training, the teacher
network obtains the optimal feature representation and classi-
fication performance on the batch of samples, and then distills
the learned feature representation to student network for a well
representation of the minority class by updating the parameters
with EMA.

3.2.1. Student network architectures
The student network (Fig.5) is a deep classification network

with the same architecture while teacher network equipped with
channel and spatial attention modules for the accurate feature
representation. The student network develops two separate at-
tention pathways, which not only learns the rich contextual fea-
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Fig. 5: The student network (a) has the same architecture with teacher network
with two separate attention pathways to obtain the discriminative features for
accurate glaucoma diagnosis. (b) Spatial attention module (SA). (c) Channel
attention module (CA).

tures by inferring the feature interdependencies along two sep-
arate attention pathways, but also learns to focus on specific
structures and contexts of the varying shapes and appearance to
capture reliable biomarkers.

Given the input feature map F ∈ RC×H×W from previous con-
volutional layer, the attention modules infer a 3D attention re-
fined feature F̂ ∈ RC×H×W to enhance the model’s discrimina-
tive ability.

We adopt a residual learning scheme along with the two
separate attention pathways to facilitate the gradient flow. To
make the attention modules available in classification network,
we first calculate the spatial attention ms(F) ∈ RC×H×W and
channel attention mc(F) ∈ RC×H×W at two separate pathways,
then integrate them into an unified attention refined feature map
F̂ = m(F) ∈ RC×H×W by a bi-linear operator

F̂ = m(F) = ‖sqrt(ms(F) ⊗ mc(F))‖2 (1)

where ⊗ is a bi-linear operator as suggested in (Lin et al., 2015).
For the given feature map F ∈ RC×H×W , its attention refined fea-
ture F̂ ∈ RC×H×W provides a weighted representation for fundus
images for each local pixel and each channel.

Given an input image, two attention modules, channel and
spatial, are conducted to calculate complementary attention at
each location and the networks focus on ‘what’ and ‘where’
information respectively. In this work, to apply attention into
classification model, the channel and spatial attention modules
are placed in a parallel manner.
Spatial attention module (SA). The spatial attention mod-
ule (Fig.5b) targets to compute the spatial attention coefficient
As ∈ [0, 1] to identify salient image regions and prune feature
responses to preserve only the activations relevant to the spe-
cific task. The output of SA is the element-wise multiplication
of input feature map F and spatial attention coefficient As as
Ms(F) = (1 + As) × F. Inspired by the attention Unet (Oktay
et al., 2018), the spatial attention coefficient As is formulated as
Eq.2 by a set of operators with the feature map F and a gating
vector Fg. We adopt soft-attention approach by introducing the
gating vector, which is the lower-level feature response in the
networks.

As = σ2(ψT (σ1(WT
x F + WT

g Fg + bg)) + bψ) (2)

where linear transformations WT
x , WT

g , ψT are implemented
as a convolution with the kernel of 1 × 1 × 1, bg and bψ are

bias. σ1 is ReLU function, and σ2(x) = 1
1+exp(x) corresponds to

sigmoid activation function.
Channel attention module (CA). The channel attention mod-
ule (Fig.5c) aims to compute the channel attention coefficient
Ac ∈ [0, 1] to identify salient feature channels to preserve the
activations relevant to the glaucoma diagnosis task. The output
of CA is the element-wise multiplication of input feature map F
and the channel attention coefficient Ac as Mc(F) = (1+Ac)×F.
The channel attention coefficient is formulated as Eq.3 with a
simple network as suggested in (Lin et al., 2015). The network
is composed of multi-layer perceptron (MLP) with two hidden
layers, ReLU function, global average pooling (GAP) and sig-
moid function (σ2).

Ac = σ2(MLP(ReLU(MLP(GAP(F))))) (3)

3.2.2. Self-ensemble learning
In our SEDC, the model relies on the self-ensemble of

teacher and student networks with the EMA, which allows us
to reuse the features learned from the majority class to rein-
force the discriminative ability of feature representation for mi-
nority class. The representation ability of network is progres-
sively distilled into the student network and updated with the
newly learned one after the next iteration. In the beginning,
we assume that the data imbalances in the training data are un-
known. The model is trained with the standard cross-entropy
loss and initial dual-curriculum. After the first iteration, the
student network attempts to identify the hard samples from a
batch of data and maintains the data imbalances with the help
of the adaptive dual-curriculum. The teacher network learns
the informative representation to discriminate the disease cases
with the re-weighted importance, which introduces easier sam-
ples first and focuses on the informative samples to increase
the feature margin between different classes. The SEDC model
counteracts the imbalances of training data using self-forming
ensembles of teacher network and student network. The ensem-
ble student network is evaluated on the entire data and provides
updated guidelines to adjust the re-weight factors in the dual-
curriculum.

In our framework, the teacher network is trained with the re-
balanced loss function updated by the dual-curriculum learn-
ing module. Then the feature representation about the majority
class is distilled into the student network to preserve the con-
sistency prediction and reinforce the discriminative ability of
student network for minority class. Here, the SEDC framework
adopts an EMA to address the teacher network’s knowledge ag-
gregation to the student network. Specifically, let wt

l and ws
l

denote the weights of teacher and student network after lth it-
eration, ws

l−1 is the weight of student network after the (l − 1)th

iteration, we have

ws
l = γws

l−1 + (1 − γ)wt
l (4)

where γ ∈ [0, 1) is the momentum parameter that controls
the weight momentum speed. With the EMA, the parameters
of student network is updated with the historical (student net-
work) and newly learned (teacher network) knowledge about
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data imbalances. The momentum update of student network’s
parameters in Eq.4 makes it evolve more smoothly. As a result,
though the teacher and student networks face different data im-
balances, the adaptive re-balancing strategy in dual-curriculum
is adjusted progressively.

3.3. Dual-curriculum learning for feature re-weighting

Innovatively, the dual-curriculum learning module is de-
signed to conduct feature re-weighting for the optimization of
decision boundary. The dual-curriculum guides the model to
learn from easier samples first and harder samples later, and
pay more attention to the important data to move the decision
boundary toward the optimal direction. The dual-curriculum
is updated along with the training procedure according to what
knowledge the model has already learned in each iteration. To
effectively deal with the two interwoven imbalances, a dual
structure curriculum is designed with sample curriculum C1
and feature curriculum C2.

3.3.1. Sample Curriculum (C1)
The sample curriculum (Fig. 6) is designed to dynamically

encode a set of importance weights on the loss function to bal-
ance the training contributions. Initially, the weights favor eas-
ily diagnosed samples, and then gradually involve an adaptive
change of weights to increase the training focus of rare hard
samples. In SEDC, we propose to reshape the loss function
with a weighting factor α not only to adjust the training benefits
of each sample from easy to hard, but also to focus training on
rare hard negatives.

Formally, given a training sample xi, its weighting factor αi

can be defined as

αi = 1 +
(1 − pi)η

log(l)
· 1(pi < ps

l ) (5)

where η is a hyperparameter, l is the epoch, and pi denotes
the model’s estimated probability for the class with label y = 1
based on student network, ps

l = λl + ps
0 denotes the threshold in

the l epoch to identify the hard samples, where λ and ps
0 are the

hyperparameter and initial threshold, respectively. The main
part of weighting factor αi consists of two parts: the former,
(1−pi)η

log(l) , belonging to [0, 1], represents the modulation for train-
ing cost of sample xi, with tunable focusing parameter η ≥ 0.
Whereas the latter, 1(pi < ps

l ), denotes the identification of hard
sample by comparing with an adaptive threshold ps

l in different
training epoch l. 1(B) ∈ {0, 1} is the indicator function that
returns 1 if B evaluates as true.

1(pi < ps
l ) =


1; i f pi < ps

l (hard sample)

0; elsewise (easy sample)
(6)

It should be noted that there are three properties of the
weighting factor αi in model training: 1) When a sample is
misclassified (pi < 0.5) and pi is small, the weighting factor
αi is equal to 1 + (1 − pi)η/log(l) and the loss is up-weighted.
As pi → 1, the sample is well-classified, so the weighting fac-
tor goes to one and the loss is unaffected. 2) When a sample is
misclassified and pi is small, 1(pi < ps

l ) = 1, it notes that the
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Fig. 6: The dual-curriculum learning module conducts two types of curriculum
to simultaneously emphasis the model’s focus on the training cost of sample and
contributions of spatial pixels. Sample curriculum (a) generates an adaptive
importance re-weighting factor αi to modulate the training cost of sample xi,
whereas feature curriculum (b) models the pixel-level attentions βi to emphasis
the discriminative on the feature maps. The two factor are used to modulate the
loss function of teacher network for adaptive feature re-weighting.
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Fig. 7: A weighting factor α is proposed in the sample curriculum (C1) to
emphasize the model’s focus on each sample corresponding to its importance
in different training stages. Specifically, the weighting factor α enables model
to pay more attention to the rare hard samples by up-weighting loss contribution
with the higher value, when it is mis-classified and its classification probability
p is smaller than an adaptive threshold ps

l .

sample is hard to be correctly classified, so its loss will be mod-
ulated with an up-weighted factor αi to focus the learning on
hard samples. As pi is growing, 1(pi < ps

l ) becomes invalid, the
sample becomes an easy one to be well-classified, then αi = 1,
the loss is unaffected. 3) At the beginning of training, the prob-
ability threshold ps

l is small to introduce more easy samples for
the training of the model. As the going of training to epoch l,
the probability threshold ps

l increasing, the harder samples are
introduced into the training process. Based on the introduction
of identification function 1(pi < ps

l ), the sample curriculum C1
modulates training contributions of each sample by exerting a
weighting factor α on the loss, which makes the model learn
from easy to hard and from imbalanced to balanced.

3.3.2. Feature Curriculum (C2)
Feature curriculum is designed to encode the importance of

local features by a set of spatial weights β on each sample. The
feature curriculum is created by up-weighting highly discrim-
inative regions and corresponding disease-specific evidential
features that potentially contribute to the final disease recogni-
tion. The evidential regions represent visual attention and diag-
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nosis focus of disease patterns. In our work, a nonlinear weight-
ing is designed to enforce the curriculum learning of better con-
volutional features, which not only generate potential disease
biomarkers but also abstract more semantic classification.

A CNN-based path is designed to guide the learning of better
spatial features using the spatial attention maps E. As shown
in Fig. 6, the path shares the input image and spatial attention
maps from the student network, and models the feature curricu-
lum as a set of weights β of convolutional features in spatial
position

βi = U pConv(σ(Conv(E) × F)) (7)

where × denotes element-wise multiplication, σ is the sigmoid
function. Conv and UpConv indicate the operator of convolu-
tion without and with up-sampling, respectively. F is feature
map outputted from the encoder of the student network.

The convolutional layer with 1×1 kernel is designed to trans-
form the multiple dimensional matrix into single channel. Sig-
moid function is used to shape the value to a range of [0,1] and
UpConv operator up-samples the matrix as the same size of the
original image (Fig. 6). Sigmoid function is used to reshape
the value to a range of [0,1] and UpConv operator up-samples
the matrix as the same size of the original image and exerts one
weight on each feature of the position.

3.4. Contrastive re-balanced loss

The contrastive re-balanced loss is developed to conduct the
re-balancing training of the teacher network by assigning adap-
tive weights to each sample and corresponding feature vectors.
Specifically, the contrastive loss is adopted to enhance the fea-
tures discriminative power by enforcing greater intra-class com-
pactness and inter-class discrepancy to preserve the beneficial
properties of cost re-weighting. The proposed contrastive re-
balanced loss is modulated by the dual-curriculum to balance
the training contribution of imbalanced data distribution. Here,
the training loss of each sample is modulated to balance the
training contributions in different iterations. Therefore, the pro-
posed SEDC learns samples weights αi and feature weights βi

for the input sample xi.
Given a set of N randomly sampled fundus images and cor-

responding labels {xi, yi}i=1,...,N , let i represents the indices of an
arbitrary images. The contrastive re-balanced loss function is
defined as

L =

N∑

i=1

{LM
i + αiLCE

i (βiθyi )} (8)

LM
i = − 1

N − 1

N∑

j=1, j,i

1(yi = y j)log
eM(zi·z j/τ)

∑N
k=1 1(k , i)eM(zi·zk/τ)

(9)

where θyi indicates the network parameters for feature represen-
tations, 1(B) ∈ {0, 1} is an indicator function that returns 1 if B
evaluates as true. LCE

i represents the cross entropy loss on the
samples i with the re-weighting function αi and feature modula-
tion βi. zi ·z j computes an inner product between the normalized
feature vectors zi and z j for similarity function M.

For greater inter-class discrepancy

For greater intra-class compactness 

anchor i
positives

negatives

Fig. 8: The supervised contrastive loss LM
i is designed to enhance the features’

discriminative power by enforcing greater intra-class compactness and inter-
class discrepancy with a self-learning manner.

To enhance the features discriminative power by enforcing
greater intra-class compactness and inter-class discrepancy, the
supervised contrastive loss LM

i is developed in Eq.9 and Fig.8.
The supervised contrastive loss is defined as the similarity of
samples based on its labels, where samples belonging to the
same class are pulled together in embedding space, while simul-
taneously pushing apart samples from different classes. Within
the context of Eq.9, sample xi is called as anchor, and sample
x j, j = {1, ...,N} denotes positives if it has the same label as
the anchor, i.e., yi = y j, while negatives if it has the different
label as the anchor, i.e., yi , y j. During the training of con-
trastive loss, the encoder is tuned to maximize the numerator
of the log argument in Eq.9 while minimizing the denominator
for the greater intra-class compactness and inter-class discrep-
ancy. For each anchor xi, {αi}Ni and {βi}Ni are encoded in the
dual-curriculum (C1 and C2 in Sec.3.2) and adaptively assign
importance weights to samples and its features after each it-
eration. The loss function is defined not only on the learning
contribution of each sample, but also on the feature aggregation
at each position.

3.5. Algorithm of SEDC

Given a training set S = {(xi, yi)}Ni=1, learning a model with
our SEDC method described in Sec.3.1 leads to the minimiz-
ing of the re-balanced loss function as Eq.8 and then iterative
updating of the student network and the dual-curriculum mod-
ule. The training procedure requires estimating the parame-
ters of the teacher network wt and updating parameters of the
student network ws with EMA. The learning procedure of the
SEDC is iterative with four stages: contrastive learning for dis-
criminative representation, optimizing teacher network with re-
balanced loss function, updating the parameters of student net-
work with EMA, updating the dual-curriculum based on the
output of student network. Algorithm 1 summarizes the de-
tailed procedure of training for our SEDC.

4. Experiments

4.1. Datasets

In this section, we evaluate the effectiveness of our SEDC on
three glaucoma datasets with the two interwoven imbalances,
LAG, REFUGE and RIM-ONE (Table. 1). LAG (Li et al.,
2019) makes public 4854 fundus images labeled with either
glaucoma(1711) or non-glaucoma(3143) obtained from Beijing
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Algorithm 1: : Training procedure of SEDC

Input : Training set S; temperature τ; epoch threshold T ;
momentum γ; similarity function M;

Output: Parameters of SEDC: ws;
1 Initialization: l = 1; randomly initialize ws and wt;
2 while l < T do
3 Shuffle the training set S, and fetch mini-batch Sn;
4 /* Forward */

5 for i← 1 to N do
6 Obtain the feature vector zi of the sample xi;
7 Calculate the similarities M(zi, z j) of feature

vectors between anchor i and positives or negatives
j;

8 /* contrastive representation learning

*/;
9 Calculate the modulations αi and βi by Eq.5 and

Eq.7;
10 Calculate the loss Li by Eq.9;
11 end
12 Calculate the summarized loss L by:
13 Eq.8: L =

∑N
i=1 {LM

i + αiLCE
i (βiθyi )};

14 /* Backward */

15 Compute the gradients and optimize the parameters wt

of teacher network /* optimizing teacher

network with SGD */;
16 /* Update */

17 Update parameters ws of student network by :
18 Eq.4: ws

l = γws
l−1 + (1 − γ)wt

l ;
19 /* updating student network with

self-ensembling */;
20 Update the dual curriculum αi and βi by :

21 Fig.4 and Eq.5 : αi = 1 +
(1−pi)η

log(l) · 1(pi < ps
l ) ;

22 /* updating dual-curriculum learning */

23 end
24 return ws

Tongren Hospital. The dataset is randomly divided into train-
ing(2427) and testing(2427) sets. REFUGE challenge (Orlando
et al., 2020) publicly releases a set of 1200 fundus images (120
glaucoma and 1080 non-glaucoma) with clinical ground truth
labels, where 800 for training and 400 for test. Furthermore,
RIM-ONE (Fumero et al., 2011) dataset is also employed to
train our SEDC, where the RIM-ONE dataset makes public 455
fundus images labeled with either glaucoma or normal cases. In
our settings, RIM-ONE is randomly split into 273 for training
and 182 for testing.

Table 1: The proposed SEDC is evaluated on the three challenging glaucoma
datasets with the interwoven imbalances (class imbalance and rare cases).

Dataset
No. of images Imbalance

ratio
Hard

samplesTotal Glaucoma Non-glaucoma

LAG 4854 1711 3143 1.8 !

REFUGE 1200 120 1080 9 !

RIM-ONE 455 200 255 1.275 !

Note that, besides the class imbalance, the three datasets also
face the rare cases problem (Smirnov et al., 2018), where a rare
of samples are hard to be correctly classified owing to its in-
homogeneous appearance (disc change, conus, enlarged cup-
ping, pale optic disc, etc) and disease severity, especially in the
preperimetric or early stage of glaucoma. In this work, the offi-
cial splits of training and validation images are utilized for fair
comparisons.

4.2. Experimental Settings

SEDC is configured under the mean teacher framework,
where the teacher network is adopted only in the training stage,
whereas the student network is implemented in both training
and inference stages. When training SEDC, the supervision of
the diagnosis label is employed for the teacher network to ob-
tain discriminative representation. The loss function of Eq.8
is minimized through the SGD algorithm and 0.9 momentum.
The initial learning rate is set to 8 × 10−2. The initial values of
α are set as 1. η = 2 in Eq.5, γ = 0.5 in Eq.4 and batch size
is set to be 16 in our experiments. The learning rate is decayed
at every 10 epoch by 0.5 in our SEDC. Inference involves sim-
ply forwarding an image through the trained student network.
The predictions from the student network are applied to final
evaluations directly.

4.3. Evaluation Criteria

Given the model trained with our method, the results are
evaluated in terms of five different metrics: Accuracy Acc =

T P+T N
T P+T N+FP+FN , Sensitivity S en = T P

T P+FN , Specificity S pe =
T N

T N+FP , F2-score F2 = 5T P
5T P+4FN+FP , and AUC. Here, TP, TN,

FP, and FN are the numbers of true positive, true negative, false
positive and false negative, respectively. It should be noted that
the sensitivity measures the performance at detecting the pos-
itives, which is significant to evaluate how good a model is at
classifying disease cases, especially rare cases. F2 is adopted
to emphasize the significance of sensitivity because a high sen-
sitivity indicates rare overlooks of the actual positive.

In addition, the receiver operating characteristic curve (ROC)
and area under ROC (AUC) are adopted in our experiments.
We indicate the backbone classification network without dual-
curriculum learning and self-ensemble as experimental base-
line, sample curriculum as C1 and feature curriculum as C2.

4.4. Comparison Methods

In our experiments, the SEDC is compared with three groups
of methods:

• Baseline methods. We employ the basic classification net-
work with attention module and cross-entropy loss as our
baselines.

• Re-balancing strategies. To prove the effectiveness of
our adaptive dual-curriculum learning, we also compare
with the re-balancing strategies proposed in state-of-the-
art re-sampling and re-weighting works in visual recogni-
tion, including focal loss (Lin et al., 2017), CB loss (Cui
et al., 2019), hard example mining (Smirnov et al., 2018),
LDAM (Cao et al., 2019).
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• State-of-the-art methods. We compare with state-of-the-
art methods on the glaucoma diagnosis (Li et al., 2019; Fu
et al., 2018b; Li et al., 2018; Zhao and Li, 2020), which
achieve good diagnosis accuracy on these three aforemen-
tioned datasets.

5. Results and Analysis

Our SEDC achieves advanced glaucoma diagnosis perfor-
mance with high classification accuracy and gains excellent pre-
cise with high sensitivity and specificity. The effectiveness of
our SEDC framework in re-balanced training of glaucoma di-
agnosis model are validated in three folds. (1) The quantifi-
cation performance is examined on three challenging datasets
with different imbalance ratio: RIM-ONE (1.275), LAG (1.8)
and REFUGE (9). (2) The effectiveness of each components
in our SEDC is probed to demonstrate its capacity in glaucoma
diagnosis. (3) The advantages of the proposed SEDC over ex-
isting methods on glaucoma diagnosis are revealed compared
with the state-of-the-art methods.

5.1. Diagnosis performance on different dataset

Experimental results on LAG. As shown in Fig. 9 and
Table. 2, SEDC delivers accuracy glaucoma diagnosis on the
dataset LAG with the top performance on all the evaluation met-
rics with 0.9712 of Acc, 0.9520 of Sen, 0.9816 of Spe, 0.9547 of
F2 and 0.9928 of AUC. The results indicate that our SEDC well
handles the imbalances in training data and obtains the accu-
racy of glaucoma diagnosis with self-ensemble dual-curricular
learning. In particular, we need to emphasize the improvement
of Sen benefited from the accurate assessment of hard samples.
Owing to the capability of re-balanced training of the imbal-
anced dataset, the proposed SEDC effectively learns the dis-
criminative features of hard samples based on the knowledge
preserve from easy cases. Therefore, compared with the base-
line, our SEDC obtains the highest scores with Sen of 0.9520
given the Spe of 0.9816. It indicates that more cases with
glaucoma are correctly identified by our method, even though
the cases with heavy diagnosis difficulty. Besides, the highest
AUC of 0.9928 indicates our proposed SEDC not only ensures
specificity by identifying the true negatives, but also obtains ex-
cellent sensitivity by correctly finding the true positives. This
means our method can help clinicians find more of hard glau-
comatous cases.

Fig. 9 shows the success of our SEDC on glaucoma diagno-
sis with the ROC curves and AUC values. Evidenced by ROC
curves and AUC value (0.9928), the glaucoma diagnosis results
indicate that our SEDC achieves a competitive performance by
progressively mining the training benefits of different samples
from imbalanced classes.

Experimental results on REFUGE. We conduct extensive
experiments on REFUGE dataset with an imbalanced ratio of
nine. Table. 2 reports the sensitivity and specificity of various
methods. The experimental results demonstrate that our SEDC
consistently achieves the best performance on glaucoma diag-
nosis, even though the more serious class imbalance.
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Fig. 9: The ROC curves with AUC values demonstrate the success of our SEDC
on glaucoma diagnosis on three challenging datasets.

Table 2: The proposed SEDC achieves advanced glaucoma diagnosis perfor-
mance with high accuracy and gains excellent precise with high sensitivity and
specificity on three challenging datasets with data imbalances.

Dataset Acc Sen Spe F2 AUC
LAG 0.9712 0.9520 0.9816 0.9547 0.9928

REFUGE 0.9525 0.8000 0.9694 0.7882 0.9332
RIM-ONE 0.9396 0.8974 0.9712 0.9091 0.9719

Especially for dataset with the class imbalanced ratio nine,
the SEDC get 0.9525 of Acc, 0.8000 of Sen, 0.9694 of Spe,
0.7882 of F2 and 0.9332 of AUC, which are 1% higher than
that of focal loss (Lin et al., 2017). SEDC stands on the ninth
of this challenge, and baseline+B+C stands on the third place
on REFUGE challenge. Our SEDC obtains comprehensively
balanced indicators from Acc, Sen, Spe, F2 to AUC, while the
ranking indicator in this challenge is AUC. Although the SEDC
does not get the first place on the leaderboard based on the AUC
value, it targets at the detection of rare cases in imbalanced
datasets and improves the performance of glaucoma diagnosis
with an average of Acc 2.19%. Benefiting from the newly-
designed self-ensemble dual-curriculum learning strategy, our
SEDC achieves glaucoma diagnosis on the datasets with differ-
ent imbalance ratios, especially extremely imbalance. It means
that the proposed SEDC framework is capable of dealing with
the interwoven issues (class balance and rare cases) existing in
the fundus dataset, which is not easy to be handle by the tradi-
tional re-balancing methods. Additionally, it can be found that
the re-balancing strategies are effective since they obtain a com-
petitive performance comparing with non-balancing methods.

Experimental results on RIM-ONE. An extensive experi-
ment is conduct on the small dataset RIM-ONE, which contains
only 455 images and imbalance ratio 1.275. Table. 2 shows the
results which demonstrate that our SEDC can obtain the best
performance on glaucoma diagnosis with the high 0.9396 of
Acc, 0.8974 of Sen, 0.9712 of Spe, 0.9091 of F2, and 0.9719 of
AUC.

Dataset-cross validation. To demonstrate the generalization
of our SEDC, the dataset-cross validation is conducted by em-
ploying the images in LAG only to train the networks, and em-
ploying images in other dataset REFUGE for testing. The re-
sults shown in Table 3. demonstrate the outperformance of our
SEDC compared with the Baseline model. It should be noticed
that, the two methods are all obtain the poor performance on
sensitivity because of the distribution shift between the training
dataset LAG and testing dataset REFUGE. It becomes another
topic about domain adaptive which is out of our discussion in
this paper.
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Table 3: The dataset-cross validation (training on LAG while testing on
REFUGE dataset) demonstrates the generlization ability of our SEDC com-
pared with the Baseline model.

Methods Acc Sen Spe F2 AUC
Baseline 0.8842 0.08 0.6303 0.096 0.9731

Our SEDC 0.9258 0.30 0.8438 0.375 0.9954
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Fig. 10: The curve of train loss along with epoch demonstrates significant im-
provements of training convergence of diagnosis model.

5.2. Ablation study

We conduct some ablation experiments by comparing against
the baselines to analyze the effectiveness of each components
in our SEDC. From the results shown in Table. 4, we have the
following observations:

1) Effectiveness of dual-curriculum. We conduct two con-
trast experiments to demonstrate the effectiveness of our newly-
designed dual-curriculum learning from two aspects:

Convergence speed. Fig. 10 shows that our SEDC achieves
the optimal convergence speed and optimal convergence point
due to the dual-curriculum designing. Compared with other
configurations, SEDC saves more than half of the training time
to get the minimum of optimization. Additionally, we can ob-
serve that our proposed dual-curriculum learning paradigm can
stably convergence to the minimum after about the 20th epoch.
Our proposed training strategy is effective for the medical im-
age classification because the dual-curriculum can adaptively
find the optimal training benefit based on sample re-weighting.

The outstanding convergence speed benefits from: 1) the
dual-curriculum learning gradually selects training samples
from easy to hard and from imbalanced to balanced to han-
dle the imbalanced data by the feature distilling. The gradual
curriculum learning strategy helps find the effective learning
direction of training samples, which benefits the searching for
better local minimal of a non-convex training criterion. There-
fore, our SEDC finds a better local minimum solution compared
with previous studies by progressive knowledge distillation. 2)
The sample curriculum emphasizes the training benefits of each
sample, no matter it is easy or hard, in the model learning pro-
cess by weighting the training cost with a nonlinear factor func-
tion, which gives rise to improved generalization and faster con-
vergence.
Effectiveness for hard sample mining. The effectiveness of
the dual-curriculum learning on hard sample mining can be
proven by Table. 4 and 5. For all the evaluation metrics, SEDC
outperforms the baseline models with an average of 0.88%,
where no dual-curriculum learning is explored during the train-
ing on LAG. It should be noted that the improvement of sensi-
tivity is 0.56% up to 0.952 whereas the improvement of speci-
ficity is 1.46% up to 0.982 on LAG, which means our SEDC

can not only accurately assess the hard samples (fundus im-
ages) with ambiguous conditions, but also effectively reduces
the false positives. Benefiting from the strategy of learning
from easy to hard and from imbalanced to balanced, the hard
samples are correctly assessed by the knowledge distillation
learned from the easy samples. These significant improve-
ments attribute the success to hard sample mining with the dual-
curriculum learning. We can also obtain this observation from
the REFUGE and RIM-ONE datasets in Table. 4 that the in-
tegration of dual-curriculum learning provides the optimal ad-
vance for glaucoma diagnosis.

To demonstrate the effectiveness for hard samples mining, an
experimental analysis of rare samples is conducted. The exper-
imental results show that, compared with the baseline method,
the SEDC significantly increases the number of detected hard
samples from 183 to 1335 on LAG dataset, from 261 to 272 on
RIM-ONE dataset, and from 37 to 86 on REFUGE dataset.

2) Effectiveness of self-ensemble learning. This experiment
illustrates the efficacy of our proposed self-ensemble mecha-
nism. Firstly, we individually train student network for curricu-
lum generation and then teacher network for glaucoma diag-
nosis, and there are no interactions between the two networks
(denoted as +B+C). Then the proposed method trains the stu-
dent and teacher network together with the self-ensemble learn-
ing in the iterative manner (denoted as +A+B+C). The com-
pared experimental results between w/ and w/o self-ensemble
learning are shown in Table. 5. It can be observed that the
self-ensemble learning achieves an average improvement of F2-
score with 1.88% and Accurate with 0.82% on LAG. Owing to
the model ensembling, our SEDC gradually discovers the data
imbalances, updates the training strategy, and re-balances the
training benefits with the spiral promoting manner. In this way,
the ensemble student network updates the dual-curriculum by
identifying the data imbalances coupled with the knowledge of
the teacher network, while the teacher network is trained with
the re-balanced loss function modulated by the adaptive dual-
curriculum. The self-ensemble learning allows the model’s per-
formance to remain consistent across the student and teacher
network.

We conducted another quantitative evaluation to analyze the
importance of self-ensemble learning by adjusting the number
of iteration in the training process. As shown in Fig. 11, an
apparent improvement of the performance was observed as the
iteration number increased. It should be noted that the proposed
self-ensemble learning method achieves almost unchanged Acc
before the 20th epoch at REFUGE dataset because the model
tends to the majority class of the data distribution in the be-
ginning of the training, and the model swiftly boots the perfor-
mance at a high level when the knowledge is learned from easy
samples.

3) Effectiveness of contrastive re-balanced loss. A quan-
titative experiment of contrastive re-balanced loss is conducted
by setting the different loss functions, where +A+B+C denotes
with our newly-designed loss and +A+C denotes with the tradi-
tional cross-entropy loss function. The part of modulation co-
efficients α and β would not be calculated in the cross-entropy
loss. To demonstrate the effectiveness of our contrastive re-
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Table 4: Performance of our SEDC under different configurations for glaucoma diagnosis with five evaluation criterion. Here, A, B and C denote the self-ensemble,
contrastive re-balanced loss function and dual-curriculum, respectively.

Dataset Acc S en S pe F2 AUC

LAG

Baseline 0.9604 0.9467 0.9675 0.9448 0.9908
+A 0.9637 0.9509 0.9707 0.9500 0.9925
+B 0.9629 0.9533 0.9682 0.9510 0.9910
+C 0.9707 0.9796 0.9543 0.9788 0.9919
+ABC 0.9712 0.9520 0.9816 0.9547 0.9928

REFUGE

Baseline 0.9450 0.6750 0.9750 0.6888 0.9306
+A 0.9400 0.7500 0.9611 0.7933 0.9391
+B 0.9275 0.7500 0.9472 0.7177 0.9321
+C 0.9475 0.7000 0.9750 0.7407 0.9182
+ABC 0.9525 0.8000 0.9694 0.7882 0.9332

RIM-ONE

Baseline 0.8626 0.8193 0.8990 0.8293 0.9392
+A 0.8956 0.8481 0.9320 0.8590 0.9523
+B 0.9341 0.8904 0.9633 0.9003 0.9728
+C 0.8901 0.8250 0.9411 0.8418 0.9706
+ABC 0.9396 0.8974 0.9712 0.9091 0.9719

Fig. 11: The changes of AUC/Acc show that the self-ensemble learning ef-
fective boosts the diagnosis performance as the iteration number increased. It
should be noted that for dataset REFUGE, although the Acc is at a lower lever
before the 20th epoch, self-ensemble with EMA swiftly achieves the optimal
performance when the knowledge is learned from easy samples.

balanced loss, the loss function proposed the evidence-guided
curriculum learning (Zhao et al., 2020) is compared. Table. 5
reports that our proposed contrastive re-balanced loss obtains
the best performance on the three datasets. It should be noted
that the introduction of supervised contrastive loss leads to a
discriminative representation of glaucomatous samples, which
give the 0.9% improvement of glaucoma diagnosis.

5.3. Performance with different imbalance ratios

To validate the performance of our SEDC with different im-
balance ratio, extensive experiments are conducted by syntheti-
cally reducing the imbalance ratio (randomly removing positive
samples). Compared with the baseline methods, the proposed
SEDC obtains the significant improvements on various imbal-
ance ratios from 1413:1 to 1413:427, even though the advances
of our SEDC are validated on the dataset that does not seem
to be extremely imbalanced. 1) Visualized comparison with
the t-SNE graph. Fig.2 shows the visualized features with t-
SNE, which demonstrates the representation learning perfor-
mance of our SEDC for glaucoma classification. Compared
with the baseline and previous method EGDCL, the proposed
SEDC is ability of obtaining the discriminative feature repre-
sentation with a wide region between two classes, each class

can be well distinguished. In the feature space, the feature dis-
tribution learned by the baseline method and EGDCL are nar-
rowed, which leads to a type of distortion and make the classifi-
cation difficulty. 2) Quantitative comparison under different
imbalance ratios. Table.6,7,8 show the advantages of the pro-
posed SEDC on imbalanced glaucoma diagnosis under different
imbalance ratio. With the gradual decrease of the imbalance ra-
tio, the performance of SEDC method gradually stabilized. It
means the proposed SEDC effectively deals with the extremely
data imbalance. In the case of extreme imbalance, the SEDC
method has stronger robustness than the baseline, which the
imbalance ratio is 1413:1, SEDC brings obvious improvement
of glaucoma diagnosis performance with the improvement of
8.53%, 24.06%, 0.07%, 28.34%, and 55.25% in terms of accu-
racy, sensitivity, specificity, F2-score and AUC, respectively.

5.4. Performance comparison
SEDC reveals great advantages for glaucoma diagnosis over

existing method such as state-of-the-art glaucoma diagnosis
method (Fu et al., 2018b; Li et al., 2019), loss re-weighting and
re-sampling methods (Lin et al., 2017; Cui et al., 2019), hard
sample mining (Smirnov et al., 2018), and curriculum learning
method with attention labels (Zhao et al., 2020).

Compared with the baseline, it is shown that the SEDC ob-
tains the average improvements of Acc 1.12%, 0.79%, 8.87%
on three datasets, which achieves the best performance on glau-
coma data re-balancing and significantly improves the perfor-
mance of glaucoma diagnosis. From the compared results we
have the following observations.

1) SEDC outperforms the state-of-the-art glaucoma diagno-
sis methods significantly on three challenging datasets. Com-
paring the results with others of Table.9, it clearly shows
SEDC obtains more accurate glaucoma diagnosis on the LAG
dataset than other SOTA CAD and re-balancing methods, which
demonstrates the remarkable advantages in glaucoma diagno-
sis. As far as we know, there is no work reported to design
algorithms for the data re-balanced training. The best perfor-
mance of glaucoma diagnosis is achieved by the general clas-
sification methods, such as disc-aware glaucoma diagnosis (Fu
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Table 5: Ablation studies by comparing against the baselines to analyze the effectiveness of each components in our SEDC. Here, A, B and C denote the self-
ensemble, contrastive re-balanced loss function and dual-curriculum, respectively.

Dataset Settings Acc S en S pe F2 AUC

LAG

Baseline 0.9604 0.9467 0.9675 0.9448 0.9908
+B+C 0.9633 0.9287 0.9823 0.9359 0.9905
+A+C 0.9625 0.9357 0.9771 0.9398 0.9915
+A+B 0.9658 0.9298 0.9853 0.9379 0.9927
+A+B+C 0.9712 0.9520 0.9816 0.9547 0.9928

REFUGE

Baseline 0.9450 0.6750 0.9750 0.6888 0.9306
+B+C 0.9500 0.7500 0.9722 0.7500 0.9805
+A+C 0.9500 0.7750 0.9694 0.7711 0.9319
+A+B 0.9525 0.7000 0.9806 0.7179 0.9376
+A+B+C 0.9525 0.8000 0.9694 0.7882 0.9332

RIM-ONE

Baseline 0.8626 0.8193 0.8990 0.8293 0.9392
+B+C 0.9231 0.8941 0.9485 0.9026 0.9797
+A+C 0.8736 0.9231 0.8365 0.8978 0.9312
+A+B 0.9341 0.8846 0.9711 0.8984 0.9708
+A+B+C 0.9396 0.8974 0.9712 0.9091 0.9719

Table 6: Experimental results under different imbalance ratios indicate that the proposed SEDC outperforms the baseline and SOTA methods on LAG dataset.

Method Imbalance Ratio Acc Sen Spe F2 AUC
Baseline 1413:1 0.6470 0.0012 0.9987 0.0015 0.4323
Baseline+Focal loss (Lin et al., 2017) 1413:1 0.6470 0.0000 0.9994 0.0000 0.5762
Baseline+Hard mining (Smirnov et al., 2018) 1413:1 0.6474 0.0000 1.0000 0.0000 0.5314
Our SEDC 1413:1 0.7323 0.2418 0.9994 0.2849 0.9848
Baseline 1413:4 0.6499 0.0139 1.0000 0.0173 0.5638
Baseline+Focal loss (Lin et al., 2017) 1413:4 0.6483 0.0023 1.0000 0.0029 0.7655
Baseline+Hard mining (Smirnov et al., 2018) 1413:4 0.6483 0.0047 0.9987 0.0058 0.6653
Our SEDC 1413:4 0.8801 0.6612 0.9994 0.7091 0.9729
Baseline 1413:12 0.6606 0.0409 0.9981 0.0506 0.7495
Baseline+Focal loss (Lin et al., 2017) 1413:12 0.6676 0.0619 0.9975 0.0761 0.7292
Baseline+Hard mining (Smirnov et al., 2018) 1413:12 0.6615 0.0432 0.9981 0.0534 0.7528
Our SEDC 1413:12 0.9106 0.7547 0.9955 0.7923 0.9842
Baseline 1413:85 0.8064 0.4579 0.9962 0.5128 0.9283
Baseline+Focal loss (Lin et al., 2017) 1413:85 0.8386 0.5666 0.9866 0.6171 0.9285
Baseline+Hard mining (Smirnov et al., 2018) 1413:85 0.8480 0.6098 0.9778 0.6556 0.9375
Our SEDC 1413:85 0.9143 0.7629 0.9968 0.9289 0.9849
Baseline 1413:171 0.8826 0.6928 0.9860 0.7341 0.9603
Baseline+Focal loss (Lin et al., 2017) 1413:171 0.8752 0.6998 0.9707 0.7361 0.9333
Baseline+Hard mining (Smirnov et al., 2018) 1413:171 0.8410 0.5970 0.9739 0.6426 0.9375
Our SEDC 1413:171 0.9518 0.8832 0.9892 0.9569 0.9910
Baseline 1413:256 0.8983 0.7710 0.9676 0.7980 0.9608
Baseline+Focal loss (Lin et al., 2017) 1413:256 0.8752 0.7301 0.9542 0.7583 0.9389
Baseline+Hard mining (Smirnov et al., 2018) 1413:256 0.8727 0.7138 0.9593 0.7453 0.9305
Our SEDC 1413:256 0.9522 0.8808 0.9911 0.9580 0.9894
Baseline 1413:342 0.9337 0.854 0.9771 0.8721 0.9803
Baseline+Focal loss (Lin et al., 2017) 1413:342 0.8909 0.7512 0.9669 0.7806 0.9473
Baseline+Hard mining (Smirnov et al., 2018) 1413:342 0.8781 0.7395 0.9536 0.7664 0.9433
Our SEDC 1413:342 0.9592 0.9054 0.9885 0.9628 0.9927
Baseline 1413:427 0.9382 0.8762 0.9720 0.8891 0.9824
Baseline+Focal loss (Lin et al., 2017) 1413:427 0.8921 0.7780 0.9542 0.8001 0.9515
Baseline+Hard mining (Smirnov et al., 2018) 1413:427 0.8917 0.8096 0.9364 0.8217 0.9541
Our SEDC 1413:427 0.9600 0.9194 0.9822 0.9611 0.9891

et al., 2018b). It should be noted that SEDC obtains comparable
results with EGDCL methods, which got slightly better results
on Sen because of its pixel-level annotation of attentions. At the
same time, our SEDC is trained with only the image-level an-
notations. Our SEDC outperforms the state-of-the-art method

with Acc of 0.936% and AUC of 1.43%. We can see from the
loss function curve that our SEDC reduces half of the training
time. It is easy to understand that our SEDC leverages the ad-
vantages of self-ensemble and curriculum learning to adaptive
find the optimal training strategy.

                  



14 Rongchang Zhao et al. / Medical Image Analysis (2021)

Table 7: Experimental results under different imbalance ratios indicate that the proposed SEDC outperforms the baseline and SOTA methods on RIM-ONE dataset.

Dataset imbalance ratio Acc S en S pe F2 AUC
Baseline 137:1 0.5714 0.0250 1.0000 0.0311 0.6241
Baseline+Focal loss (Lin et al., 2017) 137:1 0.5659 0.0125 1.0000 0.0156 0.7119
Baseline+Hard mining (Smirnov et al., 2018) 137:1 0.6374 0.1875 0.9902 0.2232 0.6614
Our SEDC 137:1 0.6758 0.2625 1.0000 0.3079 0.9616
Baseline 137:2 0.5769 0.0375 1.0000 0.0464 0.7161
Baseline+Focal loss (Lin et al., 2017) 137:2 0.5714 0.0250 1.0000 0.0311 0.7725
Baseline+Hard mining (Smirnov et al., 2018) 137:2 0.5604 0.0125 0.9902 0.0155 0.5939
Our SEDC 137:2 0.7308 0.3875 1.0000 0.4416 0.9560
Baseline 137:12 0.6648 0.3000 0.9510 0.3438 0.8056
Baseline+Focal loss (Lin et al., 2017) 137:12 0.6868 0.3000 0.9902 0.3478 0.7466
Baseline+Hard mining (Smirnov et al., 2018) 137:12 0.6484 0.2250 0.9804 0.2647 0.6349
Our SEDC 137:12 0.8846 0.7500 0.9902 0.9028 0.9674
Baseline 137:24 0.7418 0.4625 0.9608 0.5125 0.8172
Baseline+Focal loss (Lin et al., 2017) 137:24 0.6429 0.2875 0.9216 0.3276 0.6967
Baseline+Hard mining (Smirnov et al., 2018) 137:24 0.6264 0.2750 0.9020 0.3125 0.6233
Our SEDC 137:24 0.8901 0.8000 0.9608 0.8999 0.9409
Baseline 137:36 0.7582 0.5875 0.8922 0.6217 0.8678
Baseline+Focal loss (Lin et al., 2017) 137:36 0.6044 0.2875 0.8529 0.3212 0.6140
Baseline+Hard mining (Smirnov et al., 2018) 137:36 0.7253 0.4750 0.9216 0.5191 0.7688
Our SEDC 137:36 0.9066 0.8125 0.9804 0.9186 0.9673
Baseline 137:48 0.7637 0.5875 0.9020 0.6233 0.8195
Baseline+Focal loss (Lin et al., 2017) 137:48 0.6648 0.5875 0.7255 0.5949 0.6940
Baseline+Hard mining (Smirnov et al., 2018) 137:48 0.6099 0.3625 0.8039 0.3930 0.5469
Our SEDC 137:48 0.9121 0.8625 0.9510 0.9161 0.9551
Baseline 137:60 0.7857 0.7250 0.8333 0.7342 0.8452
Baseline+Focal loss (Lin et al., 2017) 137:60 0.6923 0.5375 0.8137 0.5628 0.7748
Baseline+Hard mining (Smirnov et al., 2018) 137:60 0.7967 0.6875 0.8824 0.7106 0.8605
Our SEDC 137:60 0.9340 0.8750 0.9804 0.9289 0.9634

2) SEDC outperforms the best of existing re-balancing meth-
ods on glaucoma diagnosis. In contrast to the existing re-
balancing methods that only deal with the class imbalance prob-
lem, our SEDC proposes a novel framework to simultaneously
handle the two interwoven issues (class balance and rare cases),
widespread in medical image analysis. α is calculated in fo-
cal loss and class-balanced loss based on the corresponding
works (Lin et al., 2017; Cui et al., 2019). The proposed SEDC
framework effectively trains the CAD model with an imbal-
anced dataset by leveraging the merit of self-ensemble learning
and curriculum learning, which gradually adapts the training
strategy and absorbs the suitable data to promote the capability
of the CAD model in each iteration. The adaptive training strat-
egy brings obvious improvement of glaucoma diagnosis perfor-
mance with the improvement of 1.38%, 1.6%, 1.3%, 0.18%,
and 1.78% in terms of accuracy, sensitivity, specificity, AUC,
and F2-score, respectively.

3) SEDC obviously improves the glaucoma diagnosis by si-
multaneously obtains the discriminative feature representation
and excellent classifier. As pointed in (Zhou et al., 2020; Kang
et al., 2019), sample re-balancing often brings unexpected dam-
age of the representation ability of the neural networks. Our
SEDC proposes a balanced contrastive loss to improve the abil-
ity of feature representation by exploring the margin between
data distributions. The SEDC simultaneously learns the dis-
criminative feature representation and excellent classifier to im-
proves the glaucoma diagnosis. It is easy to see from Table.9

that this strategy brings obvious improvements. Compared the
EGDCL method with pixel-level annotations of attentions, our
SEDC is only trained with the image-level labels and obtains
comparable results with the EGDCL method.

4) The gradual curriculum learning is capable of effective
utilizing the training data to improving the diagnosis perfor-
mance on small dataset. The dataset RIM-ONE (Fumero et al.,
2011) only contains 455 images with 200 glaucomatous and
255 normal eyes. Experiment results on RIM-ONE show that
our SEDC achieves outperforms with this small data. Benefit-
ing from the contrastive re-balanced loss function, our SEDC
learns the discriminative representation with contrastive learn-
ing and classification knowledge about the fundus images by
coupling the feature representation and classification in an uni-
fied framework.

5.5. Significant difference analysis

Statistical significance of the proposed SEDC versus base-
line model and previous EGDCL are examined by the paired
Mann-Whitney U-test with significance level of 0.1%. The p-
value for each pair of settings are computed to demonstrate the
significance improvement of our SEDC. A lower p-value than
0.001 indicates that the method achieves the significant differ-
ence performance than the baseline model and previously pro-
posed EGDCL. From the results in Table.10 indicate that the
proposed SEDC significantly outperforms baseline model and
previously EGDCL method. In addition, the statistical signif-
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Table 8: Experimental results under different imbalance ratios indicate that the proposed SEDC outperforms the baseline and SOTA methods on REFUGE dataset.

DMethod Imbalance Ratio Acc Sen Spe F2 AUC
Baseline 648:1 0.7600 0.0750 0.8361 0.0676 0.5110
Baseline+Focal loss (Lin et al., 2017) 648:1 0.8775 0.0000 0.9750 0.0000 0.7769
Baseline+Hard mining (Smirnov et al., 2018) 648:1 0.5275 0.7750 0.5000 0.4178 0.7019
Our SEDC 648:1 0.9725 0.7500 0.9972 0.7853 0.9977
Baseline 648:4 0.7425 0.3000 0.7917 0.2429 0.6013
Baseline+Focal loss (Lin et al., 2017) 648:4 0.8775 0.0500 0.9694 0.0578 0.6695
Baseline+Hard mining (Smirnov et al., 2018) 648:4 0.7550 0.7250 0.7583 0.5254 0.8432
Our SEDC 648:4 0.9525 0.5500 0.9972 0.6011 0.9521
Baseline 648:8 0.9025 0.0500 0.9972 0.0613 0.6357
Baseline+Focal loss (Lin et al., 2017) 648:8 0.9000 0.0750 0.9917 0.0904 0.7282
Baseline+Hard mining (Smirnov et al., 2018) 648:8 0.6900 0.7750 0.6806 0.5065 0.8234
Our SEDC 648:8 0.9275 0.2750 1.0000 0.3216 0.9856
Baseline 648:16 0.8975 0.2250 0.9722 0.2514 0.8711
Baseline+Focal loss (Lin et al., 2017) 648:16 0.8975 0.0250 0.9944 0.0307 0.9383
Baseline+Hard mining (Smirnov et al., 2018) 648:16 0.6050 0.7000 0.5944 0.4192 0.7441
Our SEDC 648:16 0.9775 0.9250 0.9833 0.9113 0.9908
Baseline 648:24 0.8575 0.3500 0.9139 0.3415 0.8551
Baseline+Focal loss (Lin et al., 2017) 648:24 0.9050 0.1750 0.9861 0.2035 0.9137
Baseline+Hard mining (Smirnov et al., 2018) 648:24 0.8725 0.7250 0.8889 0.6332 0.9357
Our SEDC 648:24 0.9700 0.8250 0.9861 0.8333 0.9788
Baseline 648:32 0.9200 0.2750 0.9917 0.3161 0.9359
Baseline+Focal loss (Lin et al., 2017) 648:32 0.8000 0.4250 0.8417 0.3632 0.7139
Baseline+Hard mining (Smirnov et al., 2018) 648:32 0.8925 0.7500 0.9083 0.6726 0.9528
Our SEDC 648:32 0.9850 0.9250 0.9917 0.9250 0.9924
Baseline 648:40 0.9400 0.6000 0.6667 0.6502 0.9808
Baseline+Focal loss (Lin et al., 2017) 648:40 0.8650 0.2250 0.9361 0.2344 0.7317
Baseline+Hard mining (Smirnov et al., 2018) 648:40 0.8000 0.5250 0.8306 0.4339 0.7086
Our SEDC 648:40 0.9675 0.7250 0.9944 0.7592 0.9914

Table 9: Comparison with state-of-the-art methods for glaucoma diagnosis on
LAG dataset. Compared with the optimal re-balanced method (hard sample
mining), SEDC achieves the best performance with the improvement of 1.38%,
1.6%, 1.3%, 0.18% and 1.78% in terms of accuracy, sensitivity, specificity,
AUC and F2-score, respectively.

Method Acc Sen Spe AUC F2
GON (Li et al., 2018) 0.897 0.914 0.884 0.960 0.901
DCNN (Chen et al., 2015a) 0.892 0.906 0.882 0.956 0.894
MCL-Net (Zhao and Li, 2020) 0.962 0.964 0.957 0.979 0.958
DENet (Fu et al., 2018b) 0.756 0.631 0.843 0.822 0.650
AG-CNN (Li et al., 2019) 0.953 0.954 0.952 0.975 0.951
Focal loss (Lin et al., 2017) 0.951 0.908 0.973 0.986 0.915
Class-balance (Cui et al., 2019) 0.949 0.915 0.968 0.986 0.919
Hard mining (Smirnov et al., 2018) 0.958 0.937 0.969 0.991 0.938
EGDCL (Zhao et al., 2020) 0.971 0.972 0.971 0.993 0.967
Our SEDC 0.971 0.952 0.982 0.993 0.955

icance versus previous EGDCL with a value small than 0.001
indicates the significant improvement of the proposed SEDC.

6. Conclusion

In this paper, we propose the SEDC framework to deal
with the data imbalances in glaucoma diagnosis. The pro-
posed SEDC designs an adaptive feature re-balancing strategy
to move the decision boundary to the optimal direction by aug-
menting the feature distribution. In the proposed SEDC, dual-

Table 10: Statistical significance of the proposed SEDC versus baseline model
is examined by the paired Mann-Whitney U-test with significance level of 0.1%.
A lower p-value than 0.001 indicates that the method achieves the significant
difference performance than the baseline model.

Dataset LAG REFUGE RIM-ONE
SEDC/Baseline 1.17 × 10−48 8.20 × 10−98 1.04 × 10−5

SEDC/EGDCL 2.78 × 10−102 3.17 × 10−71 7.90 × 10−6

SEDC/Baseline+A 6.85 × 10−56 1.07 × 10−68 1.99 × 10−5

SEDC/Baseline+B 2.39 × 10−7 1.88 × 10−83 1.98 × 10−5

SEDC/Baseline+C 6.80 × 10−64 8.76 × 10−56 1.80 × 10−6

SEDC/Baseline+AB 2.76 × 10−9 3.31 × 10−76 6.54 × 10−5

SEDC/Baseline+AC 1.54 × 10−3 7.50 × 10−83 2.06 × 10−6

SEDC/Baseline+BC 2.35 × 10−8 1.65 × 10−43 7.08 × 10−7

curriculum and self-ensemble learning are developed to aug-
ment the distorted feature distribution via feature re-weighting
and feature distilling. Benefiting from the feature augmenting,
the representation learning on imbalanced data is well done to
promote the glaucoma diagnosis performance. Extensive exper-
iments in terms of three datasets demonstrate the superiority of
the proposed SEDC that improves the state-of-the-art glaucoma
diagnosis results.
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Grill, J.B., Strub, F., Altché, F., Tallec, C., Richemond, P.H., Buchatskaya, E.,
Doersch, C., Pires, B.A., Guo, Z.D., Azar, M.G., et al., 2020. Bootstrap
your own latent: A new approach to self-supervised learning. arXiv preprint
arXiv:2006.07733 .

Haarburger, C., Baumgartner, M., Truhn, D., Broeckmann, M., Schneider, H.,
Schrading, S., Kuhl, C., Merhof, D., 2019. Multi scale curriculum cnn for
context-aware breast mri malignancy classification .

Haleem, M.S., Han, L., Van Hemert, J., Li, B., 2013. Automatic extraction of
retinal features from colour retinal images for glaucoma diagnosis: a review.
CMIG 37, 581–596.

He, H., Garcia, E.A., 2009. Learning from imbalanced data. IEEE Transactions
on knowledge and data engineering 21, 1263–1284.

He, K., Fan, H., Wu, Y., Xie, S., Girshick, R., 2020. Momentum contrast for un-
supervised visual representation learning, in: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 9729–9738.

Huo, J., Si, L., Ouyang, X., Xuan, K., Yao, W., Xue, Z., Zhang, L., Wang, Q.,
2020. A self-ensembling framework for semi-supervised knee osteoarthri-
tis localization and classification with dual-consistency. arXiv preprint
arXiv:2005.09212 .

Jesson, A., Guizard, N., Ghalehjegh, S.H., Goblot, D., Soudan, F., Chapados,
N., 2017. Cased: curriculum adaptive sampling for extreme data imbalance,
in: International Conference on Medical Image Computing and Computer-
Assisted Intervention, Springer. pp. 639–646.

Jiang, L., Meng, D., Zhao, Q., Shan, S., Hauptmann, A., 2015. Self-paced
curriculum learning, in: Proceedings of the AAAI Conference on Artificial
Intelligence.
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