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Abstract. Today’s computer-aided diagnosis (CAD) model is still far
from the clinical practice of glaucoma detection, mainly due to the train-
ing bias originating from 1) the normal-abnormal class imbalance and 2)
the rare but significant hard samples in fundus images. However, debias-
ing in CAD is not trivial because existing methods cannot cure the two
types of bias to categorize fundus images. In this paper, we propose a
novel curriculum learning paradigm (EGDCL) to train an unbiased glau-
coma diagnosis model with the adaptive dual-curriculum. Innovatively,
the dual-curriculum is designed with the guidance of evidence maps to
build a training criterion, which gradually cures the bias in training data.
In particular, the dual-curriculum emphasizes unbiased training contri-
butions of data from easy to hard, normal to abnormal, and the dual-
curriculum is optimized jointly with model parameters to obtain the
optimal solution. In comparison to baselines, EGDCL significantly im-
proves the convergence speed of the training process and obtains the top
performance in the test procedure. Experimental results on challenging
glaucoma datasets show that our EGDCL delivers unbiased diagnosis
(0.9721 of Sensitivity, 0.9707 of Specificity, 0.993 of AUC, 0.966 of F2-
score) and outperform the other methods. It endows our EGDCL a great
advantage to handle the unbiased CAD in clinical application.

Keywords: Curriculum Learning · Unbiased diagnosis · Sample Imbal-
ance · Hard sample · Computer-aided Diagnosis

1 Introduction

Ophthalmic disease seriously affects the visual health of people. For example, as
the common irreversible blinding ophthalmopathy, glaucoma will attack about
76 million people in the world by 2020 [27]. Computer-aided diagnosis (CAD)
plays a significant role in early detection to prevent vision loss of patients with
glaucoma [28]. Currently, the success of machine learning model has benefited
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Fig. 1: Training bias is an essential yet challenging problem which seriously im-
pedes the clinical application of CAD algorithms. The challenges originate from
extreme normal-abnormal class imbalance and rare hard samples. we observe
that, from both sides to the middle, glaucoma identification becomes more and
more hard, whereas training samples become rarer.

ophthalmic disease diagnosis with automated algorithm [9, 12], in particular, au-
tomatically detecting of glaucoma in fundus images [12, 30, 28, 29, 6, 31]. Through
a sequence of advances, those automated diagnosis methods achieves compared
accuracy with less time consuming on the challenging benchmarks.

However, training bias seriously impedes clinical applications of existing mod-
els due to the introduced false positives. In practice, there are two properties of
bias encountered during training a CAD model: 1) the normal-abnormal class
imbalance is suffered during collecting the training dataset in the clinic because
healthy cases account for the vast majority of populations; 2) A rare of hard
samples exists in abnormal cases that are clinically significant for population
screening and diagnosis. Therefore, the CAD model is confronted with a great
challenge, where the overwhelming majority of training data is composed of nor-
mal cases, but the trained models need to robustly recognize the hard abnormal
cases, e.g., patients in the early stage of glaucoma (Fig. 1). Obviously, the biased
models will misdiagnose those hard abnormal and cannot be absorbed by current
healthcare infrastructures because of its limitations on the reliable assessment
of hard samples [16, 18] and unacceptable sensitivity.

Training bias can be potentially addressed by curriculum learning with the
idea of data reweighting that assigns a weight to each sample and minimizes
the weighted loss [22]. Curriculum learning [1] benefits to start with easier sam-
ples and gradually takes more complex samples into consideration. Curriculum
learning highly organizes the training process by introducing different concepts
at different times in curriculum to exploit previously learned concepts to ease the
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learning of complex one. This learning paradigm has been empirically demon-
strated to be effective in achieving better generalization results for medical image
analysis [10, 11, 13].

However, existing curriculum learning methods suffer from two crucial draw-
backs when used in unbiased glaucoma diagnosis: 1) the fixed curriculum cannot
adaptively represent the training criteria of the developing CAD model to deal
with the biased training data, which result in inconsistency between the fixed
training criteria and the biased data distribution. There is no guarantee that the
fixed curriculum leads to a converged solution for training bias. 2) Curriculum
learning often discards the rare hard samples as noise or outliers in the train-
ing process, which leads to a serious ineffectiveness and imbalance of training
benefits. In gradient optimization, frequent easy samples contribute more loss
gradients during training while hard samples are not focused. This results in
poor sensitivity and biased models that cannot deal with the hard samples in
glaucoma negatives.

In this paper, we propose a novel evidence-guided dual-curriculum learning
(EGDCL) to train an unbiased CAD model with the adaptive dual-curriculum.
The adaptive dual-curriculum is innovatively developed with the guidance of
evidence maps to gradually cure the bias in training data. Therefore, the dual-
curriculum can be considered as a novel adaptive training criterion to balance the
training benefits of biased dataset from easy to hard, from normal to abnormal.
In our EGDCL, evidence maps quantitatively provide the discriminative local
features and diagnosis difficulty of each sample as the prior knowledge to identify
the bias of training data. The dual-curriculum not only inherits the advantages of
curriculum learning that select gradually training samples for effective training,
but also adaptively learns the effective weights to balance training benefits by
feature reweighting and loss reweighting.

Our EGDCL is a teacher-student framework where the student model pro-
vides prior knowledge for dual-curriculum generation by identifying the bias of
the decision procedure, while the teacher model learns the CAD model for unbi-
ased glaucoma diagnosis by resampling the data distribution with the newly-
designed dual-curriculum. EGDCL is capable of achieving effective unbiased
glaucoma diagnosis due to two advantages: 1) The proposed dual-curriculum
adaptively encodes training criteria of sample reweighting as sample weights and
feature weights to deal with the training bias. 2) The proposed teacher-student
framework jointly optimizes the dual-curriculum designing and glaucoma classi-
fying in a unified model to obtain the optimal solution of curriculum learning.

Our proposed EGDCL achieves top performance on two most competitive
glaucoma diagnosis dataset, i.e., LAG [16] and RIM-ONE [8]. The proposed
dual-curriculum learning paradigm can benefit both unbiased classification and
effective training in other areas. The main contributions of this work are sum-
marized as follows:

– A novel dual-curriculum learning paradigm (EGDCL) is proposed to tackle
the issue of training bias for unbiased glaucoma diagnosis consisting of class
imbalance and hard sample mining.
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– An effective learning method is proposed to jointly optimize dual-curriculum
designing and glaucoma classifying for the optimal solution of training bias,
which provides a new learning paradigm for deep embedding learning.

– Our EGDCL achieves top performance on various competitive glaucoma
datasets, demonstrating its classification effectiveness and optimal conver-
gence speed on unbiased glaucoma diagnosis.

2 Related Work

Computer-Aided Glaucoma Diagnosis: The success of machine learning
has benefited CAD applications [20], especially glaucomatous disease classifica-
tion [24, 30, 31, 6]. Prior works on glaucoma diagnosis devoted to classifier design-
ing with hand-crafted features like texture, higher-order spectra, wavelet-based
features. Those methods consider feature representation and classifier design
individually, thus leads to lower classification accuracy. Along with the develop-
ment of deep learning, [3, 4] reports their work on automated glaucoma detection
based on deep learning models. This type of diagnosis methods employs CNNs
and GANs in optic disc segmentation [6, 12], medical indices estimation [30, 28,
29] or ONH assessment [18, 16] to promote the performance of glaucoma diag-
nosis.
Unbiased Classification: Both image classification [22, 23] and object detec-
tion [19, 14] face a large training bias. Training bias refers to a disproportionate
ratio of observations among the different class, which leads to inefficient train-
ing because large redundancy of training samples exist in the biased dataset
that have no contributions to model training. There have two types of methods
developed to tackle the training bias: data resampling [2], which choosing the
suitable proportion of data to train a network, and data reweighting that as-
signs a weight to each sample and minimizing the weighted loss function [22].
Curriculum learning [1] and self-paced learning [15] represents a learning regime
inspired by the learning proceeds of humans that gradually proceeds from easy
to more complex or hard to deal with the samples imbalance. Besides, hard neg-
ative mining samples hard samples during training [25]. Recently, the focal loss
is proposed to address the class imbalance in one-stage objection detection [19].
Unfortunately, to our best knowledge, no work has been reported to tackle the
special issue of training bias in disease diagnosis originating from both class
imbalance and rare hard sample.

3 Methodology

As shown in Fig. 2, our EGDCL consists of three tightly integrated parts: 1) A
self-attention student network S(Θ) is proposed with an evidence identification
algorithm to learn evidence maps E for the representation of training bias, e.g.,
diagnosis difficulty and discriminative features. 2) A curriculum generation mod-
ule is innovatively designed with the help of evidence maps to learn two adaptive
sequences of training criteria (C1 and C2) for training benefits balancing. 3) A
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Fig. 2: The proposed evidence-guided dual-curriculum learning (EGDCL) con-
sists of: Student Network for evidence identification, Curriculum Genera-
tion for adaptive training criteria to balance training benefits of biased data,
and Teacher Network for unbiased glaucoma diagnosis with the regulation of
dual-curriculum.

reweighted loss function is constructed for teacher network T (Ψ) according to
the dual-curriculum outputs (α and β) to train the unbiased diagnosis model.

3.1 Student Network for Spatial Evidence Identification

Student network S(Θ) is constructed with two self-attention modules and an
evidence identification algorithm to quantitatively identify evidences E of the
decision procedure. The student network discovers evidence maps to represent
the diagnosis difficulty of samples and highlight the discriminative local features
supporting the disease classification, which provides prior knowledge of training
bias for the dual-curriculum generation.

Student Network. The student network is a self-attention deep nets with
an evidence identification algorithm for the generation of evidence maps. The
self-attention structure develops two separate attention pathways, which not
only learns the rich contextual features by inferring the feature interdependen-
cies along two separate attention pathways, but also learns to focus on specific
structures and contexts of the varying shapes and appearance to capture reliable
biomarkers.

Given the input feature map F ∈ RC×H×W , the self-attention modules infer
a 3D attention map m(F) ∈ RC×H×W . The refined feature F̃ can be computed
as

F̃ = F⊗ (1 +m(F)) = F⊗ (1 +ms(F) ·mc(F)) (1)

where⊗ denotes element-wise multiplication. We adopt a residual learning scheme
along with the two separate attention pathways to facilitate the gradient flow.
To apply the attention modules in classification network, we first compute the
spatial attention ms(F) ∈ RH ×W and channel attention mc(F) ∈ RC at two
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Fig. 3: Student network learns the feature independencies and then provides the
quantitative evidence maps with two self-attention modules and an evidence
identification algorithm. The evidence maps provide prior knowledge of training
bias about diagnosis difficulty and local features for dual-curriculum generation.

separate pathways, then integrate them into attention map m(F) ∈ RC×H×W
by a bilinear operator

m(F) = ‖sqrt(ms(F)⊗mc(F))‖2 (2)

where ⊗ is the cross production.
Spatial Evidence Identification. Once the student network captures rich

contextual features, the prediction difference analysis[32] can be adopted to es-
timate the spatial evidence maps by producing a relevance matrix E, which
reflects the relative importance of all features.

The relevance of a feature Fi can be estimated by measuring the difference
between p(c|F) and p(c|F\i), where F\i denotes the set of all features except
Fi. Here, i indicates the location index of the feature map or evidence map, and
c ∈ [0, 1] represents the class label where 0 indicates normal and 1 is glaucoma.
The difference represents how the prediction changes if the feature is unknown.

Ei = p(c|F\i)− p(c|F) (3)

The prediction p(c|F\i) if feature Fi unknown can be simulated by marginalizing

p(c|F\i) =
∑
Fi

p(Fi|F\i)p(c|F) (4)

In Eq.(4), the conditional probability p(Fi|F\i) of feature Fi is infeasible to be
modeled because pixel value is highly dependent on other pixels in medical image.
However, there exits an underlying assumption that the conditional of a pixel
given its neighborhood does not depend on the position of the pixel in the image,
even though a pixel often depends strongly on its small neighborhood. Therefore,
the conditional probability p(Fi|F\i) can be approximated by assuming that
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feature Fi is independent of others F\i by finding a patch that contains Fi. The
prediction can be computed as

p(c|F\i) ≈
∑
Fi

p(Fi)p(c|F) (5)

Based on the Eq.(3) and (5), we can estimate the relevance matrix Ei of the
same size as the input image. In the matrix, a large value means that the feature
contributed substantially to the classification, whereas a small one indicates the
feature was not important for the decision. Therefore, we can employ the rele-
vance matrix Ei as evidence maps guidance for the dual-curriculum generation
in the succeeding iterative steps described in the next section.

Summarized Advantages: Student network is developed with two self-
attention pathways coupled with an evidence identification algorithm to explore
prior knowledge of training bias for dual-curriculum generation.

3.2 Curriculum Generation

Innovatively, the dual-curriculum is designed to exploit a novel training criteria
to gradually tackle training bias. The dual-curriculum not only to adaptively
balance training benefits of biased samples, but also to emphasize the training
contribution of rare hard samples (Fig. 5), with the help of two types of weights
α and β. The weights are updated along with the training procedure of the
diagnosis model according to what knowledge the model has already learned in
each iteration as described in Sec. 3.1.

Sample Curriculum (C1). The sample curriculum (Fig. 4(a)) is designed
to dynamically encode a set of weights on the loss function to balance the training
contributions. Initially, the weights favor easily diagnosed samples, and then
gradually involve an adaptive change of weights to increase the training focus of
rare hard samples. In EGDCL, we propose to reshape the loss function with a
weighting factor α not only to adjust the training benefits of each sample from
easy to hard, but also to focus training on rare hard negatives.

Formally, the weighting factor α of samples is defined as

αi = γ(
1

1− pEi
)booli + (1− γ)(

1

pTi
) (6)

where γ is a hyperparameter, and pTi and pEi denote the model’s estimated
probability for the class with label y = 1 based on teacher network and evidence
maps. The weighting factor consists of two parts: the former represents the
contribution from evidence maps, whereas the latter denotes contribution from
the training model.

For the former, a compact classifier correct sub-network is adopted to assess
the sample xi based on the evidence maps Ei, and give the classification prob-
ability pEi for the class with label y = 1 and recognition results y′, then a bool
function is defined to validate the effectiveness of the evidence maps for disease
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Fig. 4: The dual-curriculum adaptively provides two types of weights α and β
along with the training procedure as the sample curriculum (a) and feature
curriculum (b), respectively. The weights α and β are adopted in teacher network
to balance the training benefits for unbiased glaucoma diagnosis.

Fig. 5: A weighting factor α is proposed to balance training benefits of samples
from normal to abnormal, form easy to hard. Specifically, the weighting factor
enables model to focus on rare hard samples by reshaping the loss function. The
factor up-weights loss contribution of rare hard samples with the greatest value
when it is misclassified and its classification probability p is near to 0.5.

diagnosis and then determine its contribution to sample reweighting. So the bool
function is defined as

booli =

{
0 y′i == yi

1 y′i 6= yi
(7)

It should be noted that there are three properties of the weighting factor
αi in Eq.(6): 1) When a sample is misclassified based on the evidence maps
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(pEi < 0.5), booli = 1 and the weighting factor αi is regulated by pEi , whereas
when the sample is classified correctly, the weighting factor αi is unaffected by
pEi (Fig. 5(a)). This setting balances the training contribution of samples from
both positives and negatives. 2) When a sample is misclassified based on the
evidence maps (pEi < 0.5), as pEi gets closer to 0.5, the weighting factor αi
becomes larger and the loss is up-weighted (Fig. 5(a)). 3) The weighting factor
αi is also regulated by pTi to focus on the hard samples. As pTi gets closer to 0.5,
the latter part of weighting factor αi becomes larger, whereas as pTi gets father
to 0.5, the latter part of weighting factor αi becomes smaller (Fig. 5(b)). Based
on the regulation of pTi , the model well focuses on hard samples (pTi ≈ 0.5)

Feature Curriculum (C2). Feature curriculum is designed to encode the
importance of local features by a set of spatial weights β on each sample. The
feature curriculum is created by up-weighting highly discriminative regions and
corresponding disease-specific evidential features that potentially contribute to
the final disease recognition. The evidential regions represent visual attention
and diagnosis focus of disease patterns. In our work, a nonlinear weighting is
designed to enforce the curriculum learning of better convolutional features,
which not only generate potential disease biomarkers but also abstract more
semantic classification.

A CNN-based path is designed to guide the learning of better spatial features
using the evidence maps Ei. As shown in Fig. 4(b), the path shares the input
image and evidence maps from the student network, and models the feature
curriculum as a set of weights β of convolutional features in spatial position

βi = UpConv(σ(MLP (Ei)⊗MLP (Fi))) (8)

where ⊗ denotes element-wise multiplication, σ is the sigmoid function. MLP
and UpConv indicate the operator of multi-layer perceptron and convolution
with up-sampling, respectively. Fi is feature map outputted from MLP.

The convolutional layer with 1×1 kernel is designed to transform the multiple
dimensional matrix into single channel. Sigmoid function is used to shape the
value to a range of [0,1] and UpConv operator up-samples the matrix as the
same size of the original image (Fig. 4(b)). Sigmoid function is used to reshape
the value to a range of [0,1] and UpConv operator up-samples the matrix as
the same size of the original image and exerts one weight on each feature of the
position.

Summarized Advantages: The dual-curriculum is innovatively designed
to encode two sequences of training criteria C1 and C2 with weighting factors
α and β to balance the training benefits of biased data distribution.

3.3 Teacher Network for Glaucoma Diagnosis

Teacher network is a CNN-based classification model with two distinguished
characteristics: 1) an effective training objective is defined with the help of sam-
ple weights α, which is updated in each iteration towards a uniform distribution;
2) a sophisticated feature attention is designed with the renovation of feature
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curriculum β to guide the teacher network capture the discriminative feature
which is meaningful for glaucoma diagnosis in an iterative training process.

In standard training, the model often minimizes the expected loss for the
training set and equally weight each input sample in the loss function. However,
training contributions from samples with a different disease severity and distri-
bution are unequal because of difference of gradient flow from the biased dataset.
To balance the contributions, here, the proposed EGDCL learns samples weights
αi and feature weights β for the input sample xi. Therefore, we minimize the
newly-designed loss function as

Θ∗, Ψ∗ = arg min
Θ,Ψ

N∑
i

αiCE(pTi , Θ, Ψ, βiF) (9)

where αi, βi are the loss and feature weights of the ith sample, respectively.
CE(pTi , Θ, Ψ, βiF) denotes the standard cross-entropy loss on the sample i with
the reweighted feature maps βiF. Note that {αi}Ni and {βi}Ni are encoded in
the dual-curriculum and adaptively assign importance weights to samples and
its features in each iteration. The loss function is defined not only on the learning
contribution of each sample, but also on the feature aggregation at each position.

Summarized Advantages: A novel reweighted loss function and local fea-
ture aggregation are proposed to train the unbiased diagnosis model with the
debiasing training criteria (dual-curriculum).

4 Experiments and Results

To demonstrate the superiority of the proposed EGDCL, we conduct some ex-
periments on the unbiased glaucoma diagnosis problem and compare the results
with baselines and the state-of-the-art methods.

4.1 Dataset and Evaluation

Dataset. Our EGDCL is validated with the challenging dataset LAG [16], which
makes public 4854 fundus images labeled with either positive glaucoma (1711) or
negative glaucoma (3143). The dataset is randomly divided into training (2427)
and testing (2427) sets. Furthermore, the EGDCL is also validated on other
challenging dataset RIM-ONE [8] with 51 glaucomatous and 118 normal eyes.
To compare with the baselines, fundus images are all resized to 224× 224 before
inputting to EGDCL.

Evaluation Metrics. Given the model trained with our method, the results
are evaluated in terms of five different metrics: Accuracy = TP+TN

TP+TN+FP+FN ,

Sensitivity = TP
TP+FN , Specificity = TN

TN+FP , F2 − score = 5TP
5TP+4FN+FP ,

and AUC. Here, TP, TN, FP, and FN are the numbers of true positive, true
negative, false positive and false negative, respectively. It should be noted that
the sensitivity measures the performance at detecting the positives, which is
significant to evaluate how good a model is at classifying disease cases, especially
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hard samples. F2-score is adopted to emphasize the significance of sensitivity
because a high sensitivity indicates rare overlooks of the actual positive.

In addition, the receiver operating characteristic curve (ROC) and area under
ROC (AUC) are adopted in our experiments. We indicate the teacher network
without dual-curriculum learning as experimental Baseline, sample curriculum
as C1 and feature curriculum as C2.

4.2 Training and Inference

EGDCL is configured under the teacher-student framework where student net-
work is adopted only in training stage, whereas teacher network is implemented
in both training and inference stages. When training EGDCL, the supervision of
diagnosis label and attention maps are simultaneously employed for student net-
work to obtain evidence maps. The loss function of Eq.(9) is minimized through
the SGD algorithm with Adam optimizer and 0.9 momentum. The initial learn-
ing rate is set to 4× 10−4. The initial values of α are set as 1. γ = 0.5 in Eq.(6)
and batch size is set to be 8 in our experiments. Inference involves simply for-
warding an image through the trained teacher network. The predictions from
teacher network are applied to final evaluations directly.

4.3 Performance of Unbiased Glaucoma Diagnosis

As shown in Fig. 6 and Table. 1, EGDCL delivers unbiased glaucoma diagnosis
and hard sample mining on LAG dataset [16] with the top performance on all
the evaluation metrics with 0.9712 of Accuracy, 0.9721 of Sensitivity, 0.9707 of
Specificity, 0.9665 of F2-score and 0.9931 of AUC. The results indicate that our
EGDCL well handles the training bias and obtains the accuracy of glaucoma di-
agnosis with the help of the dual-curriculum. In particular, we need to emphasize
the improvement of Sensitivity benefited from the accurate assessment of hard
samples. Compared with the baselines, our EGDCL obtains the highest scores
with Sensitivity of 0.9721 given the Specificity of 0.9707, which indicates that
more cases with glaucoma are correctly identified by our method, even though
the cases with heavy diagnosis difficulty. Besides, the highest F2-score of 0.9665
indicates our proposed EGDCL not only ensures the specificity by identifying
the true negatives, but also obtains excellent sensitivity by correctly finding the
true positives. This means our method can help clinicians find more of hard
glaucomatous cases.

Fig. 7 shows the success of our EGDCL on glaucoma diagnosis with the ROC
curves and AUC values. Evidenced by ROC curves and AUC value (0.9931), the
glaucoma diagnosis results indicate that our EGDCL achieves a competitive
performance by mining the hard positives and negatives cases.

In addition, we conduct extensive experiments on other glaucoma dataset
(RIM-ONE [8]) to demonstrate the effectiveness of the EGDCL. This experi-
ment adopts 169 cases for training and testing, and the results show promised
performance with 0.951 of Accuracy, 0.916 of Sensitivity, 0.979 of Specificity,
0.976 of F2-score and 0.927 of AUC.
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Table 1: Performance of our EGDCL on LAG under different configurations for
glaucoma diagnosis with five evaluation criterion. Each cell contains the corre-
sponding value and its improvement versus baseline.

Method Accuracy Sensitivity Specificity AUC F2-score

Baseline 0.9604 0.9467 0.9675 0.9908 0.9448

Baseline+C1
0.9662
(↑ 0.58%)

0.9709
(↑ 0.96%)

0.9638
(↓ 0.37%)

0.9945
(↑ 0.37%)

0.9630
(↑ 1.84%)

Baseline+C2
0.9571
(↓ 0.33%)

0.9345
(↓ 1.22%)

0.9688
(↑ 0.13%)

0.9907
(↓ 0.01%)

0.9355
(↓ 0.93%)

Baseline+C1+C2
0.9712
(↑ 1.08%)

0.9721
(↑ 2.54%)

0.9707
(↑ 0.32%)

0.9931
(↑ 0.23%)

0.9665
(↑ 2.17%)

4.4 Effectiveness of Dual-Curriculum Learning

Convergence Speed. Our EGDCL achieves the optimal convergence speed
due to the help of dual-curriculum design. Compared with other configurations,
EGDCL saves more than half of the training time to get the minimum of the
loss. From Fig. 6 we can observe that our proposed learning paradigm can sta-
bly convergence to the minimum after about the 15th epoch. It should be noted
that the feature curriculum C2 introduces improvement of diagnosis effective-
ness despite there exists a weak disturbance of the convergence curve between
Baseline+C1 and Baseline+C1+C2.

Fig. 6: The curve of train loss along
with epoch demonstrates significant
improvements of training conver-
gence of diagnosis model.

Fig. 7: The ROC curves with AUC
scores for glaucoma diagnosis based
on the different configurations of the
proposed EGDCL.

The outstanding convergence speed benefits from: 1) the dual-curriculum
gradually selects training samples from easy to hard by sample reweighting.
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This strategy helps to find better local minimal of a non-convex training cri-
terion by loss reweighting, hence, our EGDCL achieves the global optimization
by knowledge accumulation from easy samples. 2) The dual-curriculum learning
emphasizes the training contributions of different samples with different diagno-
sis difficulty, which gives rise to improved generalization and faster convergence.

Effectiveness for Hard Sample Mining. The effectiveness of the dual cur-
riculum learning on hard sample mining can be proven by Table. 1. For all the
evaluation metrics, EGDCL outperforms the baseline models with an average
of 1.27%, where no dual-curriculum learning is explored during the training. It
should be noted that the improvement of sensitivity is 2.54% up to 0.972 whereas
the improvement of specificity is 0.32% up to 0.971, which means our EGDCL
can accurately discover more patients who have the condition in the early stage.
These significant improvements attribute the success to hard negatives mining
with the dual-curriculum learning. We can also observe from Table. 1 that the in-
tegration of two types of curriculum (sample curriculum and feature curriculum)
provides the optimal advance for unbiased glaucoma diagnosis.

4.5 Performance Comparison

Comparisons reveal the great advantages of our EGDCL for unbiased glaucoma
diagnosis over existing methods [30, 16, 17, 7], as shown in Table. 2. We compare
our EGDCL with all the methods that have been tested on the LAG dataset,
namely the GON [17], DCNN [3], MCL-Net [30], DENet [7] and AG-CNN [16].

Compared results show that EGDCL achieves the best performance on glau-
coma diagnosis, and obtains the average improvement of 1.08%, 1.81%, 1.77%,
1.81% and 1.55% in terms of accuracy, sensitivity, specificity, AUC and F2-score,
respectively. Specifically, the EGDCL significantly improves the sensitivity of
glaucoma diagnosis to 97.21% by accurately identifying the potential glaucoma-
tous cases, which is crucial to identify potential positives in clinical diagnosis.
The above results indicate that the proposed EGDCL significantly outperforms
other state-of-the-art methods in all metrics.

Fig. 7 plots the ROC curves of our method and others, for visualizing the
trade-off between sensitivity and specificity. It is easily seen in the plot that the
ROC curve of our EGDCL is closer to the upper-left corner, which means that
the sensitivity of our EGDCL is always higher than other methods given the
same specificity value. Further quantification evaluation is reported in Table. 2,
which shows the great advantages of our method in terms of AUC value.

To demonstrate the advantaged performance, our EGDCL is compared with
other state-of-the-art methods on RIM-ONE dataset, which suffers more serous
class balance between positives and negatives. The evaluation metrics in Table. 3
indicates that our method obtains a significant improvement of 8.8% compared
with the state-of-the-art, which outperforms other methods in all metrics. It is
worth noted that our EGDCL performs significantly better than other methods
in terms of sensitivity.



14 R. Zhao et al.

Table 2: Comparison with state-of-the-art methods for glaucoma diagnosis on
LAG dataset. EGDCL achieves the best performance with the average improve-
ment of 1.08%, 1.81%, 1.77%, 1.81% and 1.55% in terms of accuracy, sensitivity,
specificity, AUC and F2-score, respectively, comparing with AG-CNN [16].

Method Accuracy Sensitivity Specificity AUC F2-score

GON [17] 0.897 0.914 0.884 0.960 0.901
DCNN [3] 0.892 0.906 0.882 0.956 0.894
MCL-Net [30] 0.962 0.964 0.957 0.979 0.958
DENet [7] 0.756 0.631 0.843 0.822 0.650
AG-CNN [16] 0.953 0.954 0.952 0.975 0.951

Focal loss [19] 0.951 0.908 0.973 0.986 0.915
Class-balance [5] 0.949 0.915 0.968 0.986 0.919
Hard mining [26] 0.958 0.937 0.969 0.991 0.938

Our EGDCL
0.9712
(↑ 1.08%)

0.9721
(↑ 2.54%)

0.9707
(↑ 0.32%)

0.9931
(↑ 0.23%)

0.9665
(↑ 2.17%)

Table 3: Comparison with state-of-the-art methods for glaucoma diagnosis on
RIM-ONE dataset. The proposed EGDCL outperforms others with a significant
improvement of 8.8%, comparing with AG-CNN [16].

Method Accuracy Sensitivity Specificity AUC F2-score

GON [17] 0.661 0.717 0.623 0.681 0.679
DCNN [3] 0.800 0.696 0.870 0.831 0.711
MCL-Net [30] 0.824 0.786 0.823 0.803 0.721
DENet [7] 0.558 0.492 0.569 0.574 0.338
AG-CNN [16] 0.852 0.848 0.855 0.916 0.837

Our EGDCL
0.951
(↑ 9.85%)

0.916
(↑ 6.77%)

0.979
(↑ 12.48%)

0.976
(↑ 6.01%)

0.927
(↑ 8.98%)

5 Conclusions

The proposed novel curriculum learning paradigm (EGDCL) performs unbi-
ased glaucoma diagnosis by designing an adaptive dual-curriculum. Innovatively,
the dual-curriculum is designed with the guidance of evidence maps to build a
training criterion, which gradually cures the bias in training data. The dual-
curriculum balances training benefits of biased data and gradually cures the
training bias from easy to hard, from normal to abnormal. Generally, the dual-
curriculum is designed to represent the training criteria of sample reweighting,
which simultaneously encodes the feature and sample weights with the guidance
of evidence maps. Experimental results indicate that our EGDCL outperforms
the baselines and the state-of-the-art methods. The proposed EGDCL not only
gives rise to improved faster convergence, but also obtains the top performance
on unbiased glaucoma diagnosis. It endows our EGDCL a great advantage to
handle the special issue of training bias in clinical applications.
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