
Medical Image Analysis 60 (2020) 101593 

Contents lists available at ScienceDirect 

Medical Image Analysis 

journal homepage: www.elsevier.com/locate/media 

Multi-indices quantification of optic nerve head in fundus image via 

multitask collaborative learning 

Rongchang Zhao 

a , b , Shuo Li c , ∗

a School of Computer Science and Engineering, Central South University, Changsha, China 
b Hunan Engineering Research Center of Machine Vision and Intelligent Medicine, Changsha, China 
c Western University, London, ON, Canada 

a r t i c l e i n f o 

Article history: 

Received 6 September 2019 

Revised 13 October 2019 

Accepted 25 October 2019 

Available online 31 October 2019 

Keywords: 

Multi-indices quantification 

Optic nerve head assessment 

Collaborative learning 

Glaucoma diagnosis 

a b s t r a c t 

Multi-indices quantification of optic nerve head (ONH), measuring ONH appearance with multiple types 

of indices simultaneously from fundus images, is the most clinically significant tasks for accurate ONH 

assessment and ophthalmic disease diagnosis. However, no attempt has been reported due to its chal- 

lenges of the large variation of fundus appearance across patients, heavy overlap and extremely weak 

contrast between optic nerve head areas. In this paper, we propose a multitask collaborative learning 

framework (MCL-Net) for multi-indices ONH quantification. The proposed MCL-Net, a two-branch neu- 

ral network, first obtains expressive shared and task-specific representations with the backbone network 

and its two branches; then models the feature exchanges and aggregations between two branches with 

a well-designed feature interaction module (FIM) to promote each other collaboratively. After that, it es- 

timates multiple types of ONH indices under a multitask ensemble module (MEM) that is capable of 

learning aggregation of multiple outputs automatically. Therefore, the proposed MCL-Net is consisted of 

the feature representation, inter-task feature interaction, dual-branch task-specific prediction, and multi- 

task quantification ensemble, which establish an effective framework which takes full advantages of seg- 

mentation and estimation tasks for multi-indices ONH quantification. Rather than the low-level feature 

sharing and individual prediction, the proposed MCL-Net collaboratively learns an optimal combination of 

shared and task-specific representation, as well as the aggregated prediction, therefore leads to accurate 

quantification of ONH with multiple types of indices. 

Experimental results on the dataset of 650 fundus images show that MCL-Net successfully delivers accu- 

rate quantification of all the three types of ONH indices, with average mean absolute error of 0.98 ± 0.20, 

0.97 ± 0.16, 1.19 ± 0.18, as well as average correlation coefficient of 0.699, 0.708 and 0.691, for diameters, 

whole areas and regional areas, respectively. In addition, the experiments demonstrate that quantitative 

indices obtained by our method provide more effective glaucoma diagnosis with AUC of 0.8698. This en- 

dows our proposed MCL-Net a great potential in clinical assessment from focal to global for ophthalmic 

disease diagnosis. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

Accurate quantification of optic nerve head (ONH) is one of

he most clinically significant tasks in the diagnosis, treatment,

nd follow-up of many ophthalmic diseases, especially chronic

laucoma ( Harizman et al., 2006; Maninis et al., 2016; Xu et al.,

014 ). It acts as an effective assessment tool in clinical practice

o provide detailed quantitative information for the analysis of the

natomical structures and pathological features in retina. According
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o ( Garway-Heath and Hitchings, 1998 ), multi-indices ONH quan-

ification, measuring the ONH appearance from different views

ith 20 indices simultaneously, helps clinician to comprehensively

valuate the focal and global appearance of the ONH with multiple

ypes of different indices, such as vertical diameters of optic disc

OD) and cup (OC), areas of OD and neuroretinal rim for the whole

isc and individual 45 degree regions shown in Fig. 1 (a). 

The current manual ONH segmentation-and-measurement ap- 

roach is very time-consuming and subjective, thus it is extremely

seful to develop an automatic multi-indices ONH quantification

ethod. However, no attempt has been reported to achieve auto-

ated multi-indices ONH quantification from fundus images due

o three challenges: (1) Estimating multiple types of quantitative
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Fig. 1. (a) Multi-indices ONH quantification including three types of indices: diameters, whole areas and regional areas. RR: rim regions; DR: disc regions; WR: whole rim; 

WD: whole disc. (b) Examples of fundus images with diversity of ONH appearances which cannot be comprehensively described by single method. (c) The extremely weak 

contrast between optic disc and neuroretinal rim in appearance and shape, which leads to the highly ill-defined borders to separate optic cup and rim areas for the accurate 

ONH quantification. 
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indices directly from fundus image is very complicated and error-

prone. The estimation often requires a complex nonlinear mapping

from the fundus image to a multivariate vector, which is hard to

model with existing methods. (2) Large variation of fundus appear-

ance across patients heavily increases the difficulty of feature rep-

resentation for multi-indices ONH quantification. ONH appearance

changes in different ways with different pathology, e.g., cupping

caused by thinning of neuroretinal rim and notch caused by the

focal enlargement of the cup. Fig. 1 (b) shows some fundus images

with a diversity of ONH appearances. (3) There exist heavy overlap

and extremely weak contrast between optic cup and neuroretinal

rim in appearance and shape (as shown in Fig. 1 (c)), which leads

to the highly ill-defined borders to separate optic cup and rim ar-

eas from complex background for the accurate ONH quantification.

Moreover, structure borders between optic cup and rim may not

be clearly visible or different experts may have different style of

annotating, which introduces ambiguities. 

While many researches have been devoted to segmenting-and-

measuring ONH automatically, existing methods address only sin-

gle index ONH quantification ( Cheng et al., 2015; Fu et al., 2018;

Jiang et al., 2018; Zhao et al., 2019c ), such as the vertical cup-

to-disc ratio (CDR). These methods are generally categorized into

two independent approaches: (1) segmentation-and-measurement

method, which measures on the segmented OD and OC masks

for quantification index; (2) directly estimation from fundus im-

ages, which learns a nonlinear mapping between fundus image and

quantitative index. The most common method is the segmentation-

and-measurement, where the robust and effective segmentation al-

gorithm is a prerequisite to segregate optic disc/cup regions from
he complex surroundings with clear borders, including statisti-

al shape model ( Xu et al., 2007; Cheng et al., 2011; Mary et al.,

015 ), multiview and multimodal approaches ( Joshi et al., 2012;

iri et al., 2015 ), superpixel-based model ( Cheng et al., 2013; Xu

t al., 2014 ), and deep learning methods ( Maninis et al., 2016; Guo

t al., 2016 ). Then an ellipse fitting is adopted as the prior to mea-

ure the vertical diameters of optic cup and disc. Recently, direct

stimation ( Zhao et al., 2019 ) of the quantitative index from fun-

us images becomes popular, which tackle ONH quantification as

 regression problem by bypassing the ill-conditioned segmenta-

ion. The ONH quantification is always formulated as the regres-

ion problem to learn an association between the given image and

heir corresponding prediction based on the expressive feature rep-

esentation. 

However, successful multi-indices ONH quantification has still

ot been reported due to the limitations of the segmentation-

nd-measurement or direct index estimation method individually.

hose methods predict ONH indices based on the incomplete fea-

ures only from the single task, but ignore the potential mutual

enefits with each other, which is more essential since local spa-

ial cues from segmentation task and global context from estima-

ion task are complementary information for accurate ONH quan-

ification. On one hand, segmentation-and-measurement methods

rovide pixel-wise spatial information for precise ONH localization,

ut it is easily disturbed by the great variability of shape and in-

omogeneity in ONH appearance, especially the ambiguity optic

up borders, because it lacks end-to-end supervised information

f global indices in the training procedure. On the other hand, di-

ect estimation method provides the end-to-end ONH quantifica-
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Fig. 2. The proposed multitask collaborative learning framework leverages the merit of spatial and semantic dependencies between ONH segmentation and indices estimation 

by multitask architecture and collaborative learning. 
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ion approach which directly learns the global context, shapes and

tructures to regress, yet it ignores pixel-level details of the ONH

tructures and visual interpretation for clinical ONH assessment. 

In this paper, we propose a novel Multitask Collaborative Learn-

ng method (MCL, Fig. 2 ) to achieve the multi-indices ONH quan-

ification. Rather than obtaining ONH quantification with single

ask individually, MCL achieves multi-indices ONH quantification

y leveraging the merit of spatial and context dependencies from

NH segmentation and indices estimation tasks with multitask

rchitecture and collaborative learning. Specifically, a dual-branch

ultitask neural network with feature exchanges and aggregations

FIM) is innovatively designed to collaboratively learn the flexible

ombination of shared and task-specific features for the model-

ng of the dependencies. To learn the ensemble of results from

wo task-specific branches and model their consistency correla-

ion, multitask ensemble module (MEM) is developed by design-

ng a consistency loss function and two-stage aggregation strat-

gy. Benefit from the multitask collaborative learning, the consen-

us of multiple views from different task-specific branches on the

ame data provides supplementary information and regularization

o each other for accurate multi-indices ONH quantification. 

The main contributions of this work are as follows: 

• For the first time, Our proposed MCL method provides an ac-

curate and comprehensive solution for ONH quantification and

assessment. The proposed method obtains multiple views of

quantitative assessment from focal to global to help clinician

for diagnosis, treatment, and follow-up of many ophthalmic

diseases. 
• Our proposed multitask collaborative learning innovatively sets

up an effective multitask training strategy for deep neural net-

works by automatically learning the flexible combination of

shared and task-specific features for accurate prediction. The

proposed method provides a generalization paradigm for other

multitask learning models. 
• Our proposed dual-branch multitask neural network (MCL-Net)

constructs an effective feature interaction module (FIM) to ex-

change and aggregate fundus features between the two task-

specific branches, and an effective multitask ensemble module

(MEM) to leverage the merit of spatial and semantic dependen-

cies between ONH segmentation and indices estimation tasks. 

In this work, we advance our preliminary attempt on multi-

ndices ONH quantification ( Zhao et al., 2019 ) in the following as-

ects: (1) conduct feature interaction module on the highly cor-

elated tasks to boost the quantification performance by multitask

ollaborative learning; (2) automate the inter-task feature interac-

ion and consistency correlations modeling with the multitask ar-

hitecture and collaborative learning, instead of independently sin-
le task prediction; (3) carry out more extensive experiments on

erformance analysis and comparison. 

The rest of this paper is organized as follows: In Section 2 we

rst introduce the related works, and then we give the de-

ailed presentation of our proposed methodology and the algo-

ithm in Section 3 . Experimental configurations and dataset details

re introduced in Section 4 and results analysis are presented in

ection 5 . Section 6 concludes the paper. 

. Related works 

For the significant clinical application, the ONH quantification

as attracted a wide of attention in the past decades. Exiting ONH

uantification methods are mainly categorized into segmentation-

nd-measurement and direct index estimation approaches. In this

ection, we will review the two existing quantification approaches

nd multitask learning. 

.1. Segmentation-and-measurement quantification 

The segmentation-and-measurement quantification is a type of

wo-stage method consisted of prerequisite segmentation algo-

ithm and following measurement step. As the key component,

he OD and OC segmentation algorithm from fundus images have

een independently studied for years. It aims to separate the op-

ic disc and cup with the clear borders or classify the fundus im-

ge pixels into OD, OC or background. Early works employ the

and-crafted features for OD and OC segmentation ( Xu et al., 2014;

heng et al., 2015; 2011; 2013; Joshi et al., 2011 ), however, the OC

egmentation is more challenging due to the low contrast bound-

ry. To increase robustness and accuracy, the segmentation algo-

ithms often require the use of prior information from experi-

nced experts and user interaction. That prior information usually

omes from anatomical assumptions, such as the ellipse geometry

f the OD and OC ( Xu et al., 2014; Chen et al., 2015 ), blood ves-

el kinks ( Wong et al., 2009; Joshi et al., 2011 ), and so on. More-

ver, effective CNN architecture has been designed for OD and OC

egmentation, and outperformed traditional hand-crafted feature 

ased methods. Some works ( Wang et al., 2019b; Fu et al., 2018;

iang et al., 2018 ) were developed for joint OD and OC segmen-

ation by utilizing the structure constraints between OD and OC

ayout in fundus image. 

While the segmentation-and-measurement quantification pro- 

ides pixel-wise details for ONH assessment, this two-stage quan-

ification limits its effectiveness in the training phase, and the

versimplified prior information prevent leads to inaccurate ONH

uantification and prevents OD/OC segmentation algorithms from

ccurate clinical application. 
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Fig. 3. The MCL-Net is a dual-branch neural network architecture implementing the multitask collaborative learning for multi-indices ONH quantification. For each branch, 

its intermediate results also serves as guidance for its counterpart, making both branches collaboratively guided. As a result, MCL-Net learns a flexible combination of shared 

and task-specific representation and model the dependencies between local spatial information and global context. 
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2.2. Direct index estimation 

Direct index estimation becomes popular recently in anatomy

quantification ( Zhen et al., 2015; 2017; Afshin et al., 2012; Xue

et al., 2018; Zhao et al., 2019c; Cheng et al., 2015 ), which ob-

tains effective performance benefiting from machine learning al-

gorithms. It aims to achieves end-to-end index estimation from

the medical image without segmentation by employing the nonlin-

ear regressor. Direct estimation usually follows a two-phase frame-

work as fundus image representation and indices prediction. Fun-

dus images are represented by hand-crafted features ( Fernandez-

Granero et al., 2017 ), deep features from multiscale feature pyra-

mid pooling network ( Zhao et al., 2019c ), a set of reference fundus

images ( Cheng et al., 2015; 2017 ). Different clinical indices, such

as CDR, disc diameter, compliance of ISNT rule, etc., are then esti-

mated from those features with a robust regression model. Zhao et

al., 2019 proposed a semi-supervised learning method to estimate

the CDR values directly from fundus images, which learns the deep

representation with neural network and regresses the CDR values

with random forests. Cheng et al. (2015, 2017) computed the CDRs

with the sparse dissimilarity-constrained coding (SDC) approach

which considers both the dissimilarity constraint and the sparsity

constraint from a set of reference discs with known CDRs. 

2.3. Multitask learning 

Multitask learning (MTL) is a learning paradigm in machine

learning to leverage complementary information contained in mul-

tiple related tasks and improve the generalization of all the

tasks ( Zhang and Yang, 2017; Argyriou et al., 2007 ). In medical

image analysis, many works incorporate multitask learning into

deep neural network to deal with the challenges in segmenta-

tion ( Argyriou et al., 2007; Wang et al., 2019a; Lu et al., 2019 ),

detection ( Rojas-Moraleda et al., 2017; López-Linares et al., 2018 ),

localization ( Roth et al., 2018 ) and quantification ( Xu et al., 2018 ).

Those methods leverage both powerful feature representation and

effective multitask relationship learning to transfer knowledge

among these related tasks. For ONH quantification, ONH segmen-

tation and quantification are highly related tasks, and it is suitable

well for improvement of multi-indices ONH quantification with the

help of the related segmentation task. 

Nowadays, existing multitask learning methods mainly deals

with two challenges. (1) Some works learn task relationships based

on the fixed form, which ignores the collaborative interaction

among different tasks. Multitask learning architectures are con-
tructed by sharing several low-level layers with auxiliary tasks in-

luding segmentation, detection and quantification, while the task-

pecific predictions are obtained individually. Xue et al. (2018) pro-

osed a brand-new multitask relationship learning method for

ull quantification of cardiac left ventricle. Mu et al. (2018) pro-

osed novel multitask strategy based on auxiliary training and ge-

metric constraints for facial landmark detection. (2) Other works

ocus on the learning of task dependencies by designing flexi-

le architectures of multitask models such as manually-tuned or

oft parameter-sharing structures. To improve generalization and

obustness, Song and Chai (2018) introduced collaborative learn-

ng to deep neural network in which multiple classifier heads

re simultaneously and collaboratively trained on the same data.

u et al. (2018) proposed a multitask generative adversarial net-

ork for joint segmentation and quantification of myocardial in-

raction. Ma et al. (2019) ; Misra et al. (2016) have shown that hav-

ng more flexible architectures in multitask models to help im-

rove the prediction accuracy. 

Different from existing multitasks learning, we propose a flexi-

le multitask framework of Multitask Collaborative Learning (MCL)

o achieve multi-indices ONH quantification. The proposed MCL

earns the merit of spatial and context dependencies between OD

egmentation and indices estimation tasks. Rather than sharing the

ow-level layers and feature representation, MCL framework auto-

atically learns an optimal combination of shared and task-specific

epresentation from both tasks and aggregates those features us-

ng the proposed feature interaction module. Acquiring the advan-

ages from collaborative training and flexible feature combination,

CL refines details and context semantics of ONH to achieve ro-

ust multi-indices ONH quantification. 

. Proposed methodology 

The proposed multitask collaborative learning ( Fig. 3 ) is a

ual-branch neural network framework (MCL-Net) with a back-

one network and two branches for features representation and

ask-specific predictions. Different from existing models, two well-

esigned modules are inserted for collaborative learning and

ulti-indices ONH quantification. Specifically, the feature interac-

ion module (FIM) is innovatively designed for feature exchange

nd aggregation between the two task-specific branches, and the

ultitask ensemble module (MEM) is developed for quantification

ggregation by the consistency loss function and ensemble learn-

ng. By training two highly related branches collaboratively, the
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Fig. 4. Multitask collaborative learning between segmentation and estimation. (a) The consistent and complementary collaboration between individual segmentation and 

estimation tasks is modeled in an unified framework. (b) Multitask collaborative loss function is constructed to collaboratively learn optimal model that is capable of capture 

the more details of ONH quantification by providing supplementary information and regularization to each others. 
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CL-Net learns the dependencies and complements from the two

asks to achieve accurate multi-indices ONH quantification. 

.1. Multitask collaborative learning (MCL) 

The multitask collaborative learning (MCL) conforms to the

eature-based multitask learning, which learns multiple task-

pecific branches collaboratively to improve the accuracy of multi-

ndices ONH quantification. The collaborative learning enhances

nd refines the quantification details with the flexible combina-

ion of shared and task-specific feature representations. To fully

everage the benefit of complementary information and improve

he semantic consistency among different tasks, instead of inde-

endently capturing the task-specific feature, the proposed MCL

onducts a collaborative feature exchange and aggregation frame-

ork by adding the module of FIM and MEM between segmenta-

ion and estimation branches. Taking advantages of FIM and MEM,

CL promotes performance improvement on accurate and robust

ulti-indices ONH quantification by multitask collaborative learn-

ng. 

We study the task of multitask collaborative learning to deal

ith multi-indices ONH quantification, where the segmentation

nd estimation branches are trained in a unified multitask learning

ramework (as shown in Fig. 4 (a)). The goal of our multitask col-

aborative learning is not only to train an optimized segmentation

nd estimation tasks, but also to learn the consistent and comple-

entary collaboration of the two tasks for accurate multi-indices

NH quantification. Hence, the overall objective of the multitask

ollaborative learning is 

 total = α L seg (W) ︸ ︷︷ ︸ 
segmentation loss 

+ β L est (W, y est ) ︸ ︷︷ ︸ 
est imat ion loss 

+ γ L con (y est , y seg ) ︸ ︷︷ ︸ 
consistency loss 

(1) 

here L seg is the segmentation loss to ensure the local spatial lay-

ut of optic disc and rim be encoded by the segmentation branch,

 est is the estimation loss to provide the global context informa-

ion for the structure and shapes of optic disc by the estimation

ranch, and L con denotes the consistency loss for measuring the

rediction consistency between the segmentation and estimation

ranches, which imposes a complementary regularization on the

ultitask learning framework. Hence, W is the parameters of the

odel, y seg is the derived indices vector based on the outputs of

egmentation branch, and y est is the predicted indices vector by

he estimation branch. 

The collaborative relationship among the three terms in

q. (1) is demonstrated in Fig. 4 (b), where segmentation loss aims

o learn the pixel-level local spatial details of optic disc such as
ontours, edges, while estimation loss ensures the global struc-

ure and context to be encoded. The segmentation and estima-

ion branches capture the complementary consensus of multiple

iews on the same data for accurate multi-indices ONH quantifi-

ation. As shown in Fig. 4 (b), dependencies and complementar-

ty exists between local pixel-level segmentation and global index-

evel estimation. Although the two tasks have different optimiza-

ion branches, they have the unified and consistent optimization

esults on multi-indices ONH quantification. Hence, our multi-

ask collaborative learning is proposed to achieve accurate multi-

ndices ONH quantification by collaborative learning of the depen-

encies and complementary between the segmentation and esti-

ation branches. To this end, we state the collaborative learning

ased on threefold: (1) The ground truth and segmentation-based

esults should be minimization, i.e., min L seg ; (2) The ground truth

nd estimation-based results should be minimization, i.e., min L est ;

3) The segmentation-based and estimation-based results should

e consistent, i.e., min L con . 

.2. Dual-branch neural network architecture (MCL-Net) 

The proposed MCL-Net ( Fig. 3 ) contains an adapted DeepLab

s backbone network for shared feature generation, but two task-

pecific decoder branches for task-specific feature selection and

rediction. For each branch, its representation also serves as guid-

nce for its counterpart, making both branches collaboratively

uided. The MCL-Net allows for learning of the inter-task corre-

ation by shared feature representation, whilst simultaneously al-

ows for modeling of semantic dependencies and consistency for

ulti-indices ONH quantification between different task-specific 

ranches by collaborative feature interaction. 

.2.1. Segmentation branch for ONH segmentation-based 

uantification 

Segmentation branch formulates OD and OC (optic cup) seg-

entation as the multi-label pixel-level classification problem to

earn the distribution of OD and OC region. To improve the seg-

entation for ONH quantification, we develop a novel distribution-

ware segmentation loss to guide the segmentation decoder to

apture the smoothness priors of the OD and OC region. The seg-

entation loss includes a dice coefficient loss L dice measuring the

verlap between the prediction and ground truth, and a distribu-

ion loss L dist encouraging the predictive borders of OD and OC re-

ions to be similar to the ground truth. Therefore, the distribution-
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Fig. 5. Distribution regression forests(DRF). The top solid circles denote the output unit of FC layers of estimation branch, the solid blue circles is leaf nodes which hold a 

predication distribution s as shown its blow. The hollow blue circles denote split nodes, which define a split function h and randomly connected with the output of FC layers 

as the yellow dash. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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aware segmentation loss is defined as 

L seg (W) = 1 − 2 

∑ 

i p i y i ∑ 

i p 
2 
i 
+ 

∑ 

i y 
2 
i ︸ ︷︷ ︸ 

L dice 

+ 

∑ 

c 

d c log (s c ) ︸ ︷︷ ︸ 
L dist 

(2)

where p and y denote the predicted probability map and ground

truth, respectively. s and d denote the predicted and ground truth

of border pixels, and c is the number of the border pixels. 

3.2.2. Estimation branch for regression-based quantification 

We adopt a newly-designed model named Distribution Regres-

sion Forests (DRF, Fig. 5 ) in the estimation branch to achieve in-

dices estimation by constructing a multitude of differentiable deci-

sion tree linked with the backbone network by convolutional and

fully-connected layers. The estimation branch is consisted of two

convolution layers, one fully-connected layer and one DRF mod-

ule. The convolution layers are used to refine task-specific feature

from the shared representation, meanwhile, exchange and aggre-

gate information from segmentation branch. The fully-connected

layer is used to transform the multi-channel feature maps into vec-

tors for inputs of DRF module. The DRF not only allows for feature

selection for the specific task from the shared representation, but

also allows to be trained with other components as the end-to-end

manner. The DRF module consists of a set of split nodes N and leaf

nodes L , which construct a multitude of decision trees at training

time and output the prediction of the individual branch. 

Mathematically, the aim of estimation branch (DRF) is to learn

a mapping function g: x → d from the shared features to its cor-

responding target distribution of the quantitative indices by a set

of split nodes N and leaf nodes L . Each split node n ∈ N defines a

split function h n (x ; w ) : R 

m × W → { 0 , 1 } , characterized by w ∈ W
and used to route the input into right or left sub-tree, while each

leaf node l ∈ L holds a predication distribution s l . When a sample

x ∈ X reaches a split node n it will be sent to the left or right sub-

tree based on the split function h n ( x ; w ). To enable the tree with

differentiable split function and probabilistic routing, first a routing

function μl ( x | w ) is defined to provide the probability that sample

x will reach leaf node l as 

μl (x | w ) = 

∏ 

n ∈N 
h n (x ; w ) 1 (l∈L le f t 

n ) (1 − h n (x ; w )) 1 (l∈L right 
n ) (3)

where 1 ( ·) is an indicator function, L 

le f t 
n and L 

right 
n denote the sets

of leaf nodes held by the subtrees rooted at the left and right chil-

dren left, right of node n. h n ( x ; w ) indicates the probability that

split node n ∈ N selects input feature x as its task-specific feature. 

To enable the forest with the capability to be optimized end-

to-end together with the backbone network, the differentiable split

function is defined as 

h n (x ; w ) = σ ( f ϕ(n ) (x ; w )) (4)
here σ ( · ) is the sigmoid function, f ϕ( n ) ( x ; w ) is outputs of the

etwork, adopted as the shared feature extraction function to end-

o-end learn the expressive representation of fundus image. ϕ( · ) is

n index function to assign the connection between the output of

unction f ( x ; w ) and split node n . In this work, the index function

( · ) is a random function to link split nodes with the shared root

etwork randomly. Therefore, the final mapping function g(y|x; w)

s obtained by weighting all the holding distribution of the proba-

ility of reaching the leaf 

 (y | x ; w ) = 

∑ 

l∈L 
μl (x | w ) s l (5)

Given the training set S = { (x i , d x i ) } N i =1 
, where d x i is the dis-

ribution generated by Gaussian distribution whose mean is the

hronological indices, our goal is to learn a distribution regression

orests which can output the distribution g(y | x i ; w ) similar to d x i 

or each sample i . In this work, the Kullback-Leibler (K-L) diver-

ence is adopted to measure the similarity between predicted dis-

ribution g(y|x i ; w ) and ground truth d x i . Therefore, the learning

rocedure is minimizing the following cross-entropy loss 

 est (W, y est ) = − 1 

N 

N ∑ 

i =1 

C ∑ 

c=1 

d c x i 
log( 

∑ 

l∈L 
μl (x i | w ) s l ) (6)

here y est denotes the estimated indices held by all the leaf nodes

f this forest, d c x i 
is the probability of the sample x i having the c -th

round truth. 

.3. Feature interaction module for inter-task features exchange and 

ggregation 

Given that multiple indices quantitatively describe the corre-

ponding ONH appearance from local to global, it is intuitive that

ocal spatial cues and global semantics of ONH have high depen-

encies, which is helpful for decoders to refine details and focus on

earning informative patterns. Collaboratively, the neural activation

rom the specific kernel in segmentation branch can be considered

s an extra spatial cue for regressing ONH indices. In this regard,

e propose a new unit, Feature Interaction Module (FIM) , that uti-

izes features from the highly related branches to model the de-

endencies by learning an aggregation of the task-specific features.

Given feature maps x S , x E from segmentation and estimation

ranches, we learn the aggregation ˜ x S , ˜ x E and then feed these ag-

regated features as input to the next layers ( Fig. 3 ). The exchange

nd aggregation are parameterized using a nonlinear transforma-

ion matrix �, which represents the feature transformation be-

ween different branches and different layers of the same branch.

pecifically, at location ( i, j ), the feature exchange and aggregation
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Fig. 6. Detail structure of Feature Interaction Module in the our MCL-Net, where a 

CNN-based module is implemented containing convolution and concatenation unit 

to achieve the function of nonlinear transformation � represented in Eq. (8) . 
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re represented as 

˜ x i j 
S 

˜ x i j 
E 

]
= 

[
�SS �SE 

�ES �EE 

][
x i j 

S 

x i j 
E 

]
(7) 

e aim to exchange and aggregate the different information be-

ween the two branches by learning the optimizated matrix �,

here �SS , �EE , �SE , �ES represents the feature transformation

rom segmentation to segmentation branch, from estimation to

stimation branch, from segmentation to estimation branch, and

rom estimation to segmentation branch, respectively. 

In the training procedure, the partial derivatives for loss func-

ion can be computed as 
 

∂L 

∂ x i j 
S 

∂L 

∂ x i j 
E 

] 

= 

[
�SS �SE 

�ES �EE 

][ 

∂L 

∂ ̃ x i j 
S 

∂L 

∂ ̃ x i j 
E 

] 

(8) 

∂L 

∂ �SE 

= 

∂L 

∂ ̃  x i j 
E 

x i j 
S 
, 

∂L 

∂ �SS 

= 

∂L 

∂ ̃  x i j 
S 

x i j 
S 

(9)

ecause of the linear combination of feature aggregation in Eq. (7) ,

e train the FIM with the MCL-Net with the backpropagate algo-

ithm for the optimized �. 

We use the FIM unit for collaborative learning in the dual-

ranch neural network. Fig. 6 shows the details of FIM structure,

t takes features from two branches as inputs, and then imple-

ents the convolution and concatenation operators as � shown

n Eq. (8) to exchange and aggregate informative features for each

ask. In this way, the two branches interact and exchange to di-

ectly supervise their counterpart. In other words, the FIM unit

ervers as a regularization to help regularize both branches to ob-

ain consistent ONH quantification. 

.4. Multitask ensemble module for final ONH quantification 

To learn the ensemble of results from two branches and model

heir consistency correlation, multitask ensemble module is devel-

ped, which contains a consistency loss function to impose the

enalty for the consistent multi-indices ONH quantification be-

ween segmentation and estimation branches, and a two-stage

ggregation for final ONH quantitative indices. Consistency loss

s designed to minimize the prediction difference between two

ranches, i.e., ONH segmentation and indices estimation tasks. Ide-

lly, indices predicted by the two branches are the same. To ensure

he indices from different branches as consistent as possible, the

onsistency loss is defined as the difference between the indices

ectors 

 con = 

1 

2 

(y est − y seg ) 
2 (10)

here y est and y seg denote indices vectors coming from estimation

ranch and ONH segmentation branch, respectively. 
To integrate predictions from each leaf node of the two task

ranches, two-stage aggregation is adopted. 1) Intra-task aggre-

ation: with the prediction on each leaf nodes of DRF, the task-

pecific quantitative indices are obtained by aggregating those leaf

odes predictions into a single coherent output followed ensemble

earning as 
∑ 

l∈L μl (x | w ) s l , where μl ( x | w ) is the probability that

eature x be selected by leaf node l and defined in Eq. (3) , s l is

he predicted indices vector on leaf node l . Note that s l is mea-

ured based on the segmented mask when node l belongs to ONH

egmentation branch, while directly regressed when belongs to in-

ices estimation branch. 2) Inter-task aggregation: with the predic-

ion of each task-specific branch, the final quantitative indices are

uild based on the simple yet effective adaptive weighting method.

CL-Net learns to average task weighting by considering the loss

or each task, and the task weighting for segmentation and estima-

ion tasks are defined as: 

seg = 

exp (L 

t 
seg ) 

exp (L 

t 
seg ) + exp (L 

t 
est ) 

, αest = 

exp (L 

t 
est ) 

exp (L 

t 
seg ) + exp (L 

t 
est ) 

(11) 

here L 

t 
seg and L 

t 
est are the average loss from segmentation and

stimation task branches in the t - th epoch over several iterations. 

.5. Algorithm of MCL-Net 

Given a training set S = { (x i , y i ) } N i =1 
, learning a multitask col-

aborative learning model described in Section 3.1 leads to mini-

izing the overall objective ( Eq. (1) ). The training procedure re-

uires estimating the parameters W both in two branches and

hared backbone. We optimize the segmentation branch and es-

imation branch in an alternate way. To optimize the individual

ranch, we minimize the objective function in Eqs. (2) and (6) , re-

pectively. To optimize the MCL-Net collaboratively, we calculate

he consistency loss L con , L seg and L est in Eq. (1) , i.e., 

(W 

∗, �∗) = arg min 

W, �
L total (12)

Algorithm 1 summarizes the detailed procedure of training for

ur MCL-Net. The algorithm follows the two-stage optimization

lgorithm 1 Training procedure of MCL-Net. 

nput: Fundus images: X and its corresponding ground truth (seg-

mentation mask M ONH indices Y); learning rate η, constants

α, β, γ ; 

utput: Parameters of MCL-Net: W; the quantitative ONH indices:
ˆ Y 

1: Initialize �, W; 

2: /* first stage 

3: while iter < max-iter do 

4: while iter1 < max-iter1 do 

5: Update W as W ← W − η∇w L seg by optimizing the seg-

mentation objective (Eq. (2)); 

6: end while 

7: while iter2 < max-iter2 do 

8: Update W as W ← W − η∇w L est by optimizing the esti-

mation objective (Eq. (6)); 

9: end while 

10: end while 

11: /* Second stage 

12: while L total not converged do 

13: Update W with back propagation from L total (Eq. (1)); 

14: Update � with (Eq. (9)); 

15: end while 

16: Update Y with (Eq. (11)) 

17: return W, �
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strategy which contains two steps: (1) fixing � and optimizing

individual branches W alternatively; (2) jointly optimizing over-

all objective �, W and updating quantitative indices, until con-

vergence or a maximum number of iterations is reached. In both

stages, the parameters learning of the neural network can be opti-

mized through the usually utilized iterated stochastic gradient de-

scent (SGD) procedure. 

4. Experiments 

4.1. Datasets 

In this section, we evaluate the effectiveness of our MCL-Net on

two widely used datasets, ORIGA ( Cheng et al., 2017 ) and REFUGE

challenge dataset. 1 The ORIGA contains 650 images (168 glaucoma-

tous and 482 normal eyes) with manual labeled optic disc mask,

divided into 325 training and 325 testing images. REFUGE chal-

lenge dataset contains 400 images with manual pixel-wise anno-

tations of the optic disc and cup contours with seven independent

glaucoma specialists from Zhongshan Ophthalmic Center, divided

into 200 training and 200 testing images. 

All the fundus images undergo several preprocessing steps, in-

cluding ROI cropping and resizing. The input images of MCL-Net

are aligned with the dimension of 512 × 512 centering at OD. Then

the ground truth values of 20 indices are obtained by measuring

the borders of optic disc, cup and rim. During the evaluation, the

obtained results are evaluated by the pixel number. 

To leverage the powerful representation for the circle-shaped

ONH appearance, followed as ( Fu et al., 2018 ), all input fundus im-

ages are pixel-wisely converted into the polar coordinate system

and then re-sampled. Let X ( θ , ρ) denotes the point on converted

fundus image, where θ , ρ are the directional angle and radius in

the polar coordinates, respectively. Pixels in optic disc region are

re-sampled along the angular and radius dimension, therefore re-

sulting in the regions of OC, OD and background in the ordered

layout. In this work, ρ equals half of the disc region size, θ is 360

for the fundus image. 

4.2. Configurations 

The adapted DeepLabv3+ ( Chen et al., 2018 ) is adopted as the

backbone network of the MCL-Net where the Xception is replaced

by the lightweight MobileNetV2 ( Sandler et al., 2018 ) to reduce the

number of parameters. Then we add the segmentation and estima-

tion branches, FIM and MEM modules into the backbone network.

The estimation branch consists of two convolution layers with the

output channel of {256, 256} and one fully connected layers fol-

lowed by a DRF unit. The DRF contains two binary trees and sets

the hyper-parameters of DRF as the previous work ( Shen et al.,

2018 ). ϕ( · ) in Eq. (4) assigning the connection between the output

of fully connected layer and the split node is randomly generated

before forest learning, which means that the connection between

the neuron of FC layer from neural network and split nodes are

randomly generated. The segmentation branch is a decoder neural

work with three blocks of convolutional layers followed by ReLU

and batch normalization. 

Our MCL-Net is implemented with the Caffe library, using

NVIDIA Tesla P100 Server Graphics Cards. Our network is initial-

ized with the pretrained wighted. We adopt the alternating opti-

mization strategy to obtain the optimistic parameters of DRF and

the SGD algorithm for the whole MCL-Net. Other hyper-parameters

are fixed as follows: α = 0 . 8 , β = 0 . 8 , γ = 0 . 5 . 
1 https://refuge.grand-challenge.org/Home/ 

m

 

o  
.3. Evaluation criteria 

In this work, ONH indices obtained from manually annotated

orders by ophthalmologists are adopted as the gold standard

ground truth) for ONH quantification. We evaluate the proposed

CL-Net in terms of correlation coefficient ρ and mean absolute

rror (MAE) between the ground truth values and the computed

ne as 

AE(y, y ) = 

1 

N 

N ∑ 

i =1 

| y i − y i | (13)

(y, y ) = 

2 

∑ N 
i =1 (y i − m )( y i − m ) ∑ N 

i =1 (y i − m ) 2 + 

∑ N 
i =1 ( y i − m ) 2 

(14)

here m = 

1 
N 

∑ N 
i =1 y i , m = 

1 
N 

∑ N 
i =1 y i 

Statistical significance of the proposed method versus ground

ruth is examined by the paired t -test with significance level of

.1%. The p -value for each pair of measurements are computed to

emonstrate the significance improvement of our proposed MCL-

et. A lower p -value than 0.001 indicates that the method achieves

he quantification of the corresponding ONH index with no signif-

cant differences. 

In addition, the performance for glaucoma screening is eval-

ated based on the computed ONH indices. We report the re-

eiver operating characteristic (ROC) curve and area under the

urve (AUC) as the overall measure of the screening strength. To

lot the ROC curve and compute AUC value, the obtained indices

re first inputted into a simple classifier (such as SVM) and the

ubjects with a larger output are regarded as glaucomatous sus-

ect. Then we calculate the false positive rate and true positive

ate. By changing the threshold value, the ROC curve is obtained

nd AUC value is computed. 

. Results and analysis 

The effectiveness of the proposed MCL-Net for multi-indices

NH quantification is validated in three folds. (1) The quantifi-

ation performance is examined for the three types of ONH in-

ices. (2) The effectiveness of each component in our MCL-Net

s probed to demonstrate its capacity in robust multi-indices

NH quantification. (3) The advantages of the proposed MCL-

et over existing methods on ONH quantification and glaucoma

creening are revealed compared with state-of-the-art methods, in-

luding the single segmentation-and-measurement methods and

nsemble-learning-based method. 

.1. Performance of multi-indices ONH quantification 

As shown in the last row of Table 1 , MCL-Net successfully de-

ivers accurate quantification of all the three types of ONH indices

y leveraging the merit of segmentation and regression tasks with

ultitask collaborative learning. Specifically, MCL-Net achieves av-

rage MAE of 0.98 ± 0.20, 0.97 ± 0.16, 1.19 ± 0.18, as well as aver-

ge correlation coefficient of 0.699, 0.708 and 0.691, for diameters,

hole areas and regional areas, respectively, which is more accu-

ate than other single-task-based approaches with the lowest aver-

ge MAE over all the 20 quantitative indices. Experimental results

n different datasets (shown in Table 2 ) demonstrated that our

CL-Net achieves robust multi-indices ONH quantification with a

ow average MAE for diameters, regional areas and whole areas.

e have the observation that the MCL-Net has better performance

n ORIGA dataset than those on REFUGE dataset. One possible rea-

on is that the larger size of training set on ORIGA dataset pro-

otes the learning capability of deep learning. 

The areas indices (both regional and whole) involves both the

ptic disc and cup contours, which are challenged to be localized,

https://refuge.grand-challenge.org/Home/
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Table 1 

Performance of MCL-Net under different configurations for multi-indices ONH quantification versus ground truth. Average Mean Abso- 

lute Error (MAE), correlation coefficient ρ and p -value for paired t -test with significance level of 0.1% are used for the quantification 

evaluation criterion. Here each cell contains MAE on the top and ρ/ p -value on the bottom. 

Method Segmentation branch Estimation w/ DRF Estimation w/o DRF two-task Ensemble collaborative + Ensemble 

Diameter 

Dia1 0.97 ± 0.25 0.97 ± 0.29 1.23 ± 0.64 0.97 ± 0.29 0.94 ± 0.23 

0.605/ < .001 0.6089/ < .001 0.5214/ < .001 0.6104/ < .001 0.6408/ < .001 

Dia2 1.07 ± 0.21 1.05 ± 0.25 1.51 ± 0.60 1.05 ± 0.25 1.03 ± 0.18 

0.7158/ < .001 0.7192/.001 0.5185/ < .001 0.7203/ < .001 0.7563/ < .001 

Average 1.02 ± 0.23 1.01 ± 0.27 1.37 ± 0.62 1.01 ± 0.27 0.98 ± 0.20 

0.6604 0.6640 0.5199 0.6809 0.6985 

Whole areas 

WR 0.32 ± 0.16 0.32 ± 0.15 0.57 ± 0.29 0.32 ± 0.15 0.31 ± 0.08 

0.3921/ < .001 0.3901/.002 0.2497/.003 0.3930/.001 0.4561/ < .001 

WD 1.64 ± 0.17 1.65 ± 0.20 1.89 ± 0.42 1.65 ± 0.20 1.63 ± 0.18 

0.9425/ < .001 0.9442/ < .001 0.7957/.005 0.9597 < .001 0.9607/ < .001 

Average 0.98 ± 0.16 0.98 ± 0.17 1.23 ± 0.35 0.98 ± 0.17 0.97 ± 0.13 

0.6673 0.6671 0.5227 0.6763 0.7084 

Regional areas 

RR1 0.73 ± 0.25 0.75 ± 0.23 0.96 ± 0.49 0.73 ± 0.21 0.72 ± 0.20 

0.3114/.239 0.3121/.254 0.1944/.302 0.3189/.284 0.4210/.240 

RR2 0.35 ± 0.14 0.34 ± 0.13 0.47 ± 0.25 0.34 ± 0.10 0.31 ± 0.12 

0.3584/.107 0.3658/.114 0.2151/.300 0.3763/.127 0.4852/.103 

RR3 0.11 ± 0.11 0.12 ± 0.10 0.21 ± 0.19 0.11 ± 0.09 0.09 ± 0.10 

0.3188/ < .001 0.3159/ < .001 0.2654/.022 0.3189/ < .001 0.5012/ < .001 

RR4 0.55 ± 0.35 0.55 ± 0.32 0.68 ± 0.48 0.55 ± 0.29 0.52 ± 0.28 

0.3792/ < .001 0.3756/ < .001 0.2978/.004 0.3763/ < .001 0.5615/ < .001 

RR5 0.65 ± 0.31 0.68 ± 0.34 0.89 ± 0.41 0.69 ± 0.21 0.65 ± 0.20 

0.4254/ < .001 0.4210/.001 0.3001/.001 0.4215/ < .001 0.5110/ < .001 

RR6 0.28 ± 0.20 0.31 ± 0.14 0.45 ± 0.29 0.30 ± 0.13 0.27 ± 0.13 

0.3793/.010 0.3721/.010 0.2674/.015 0.3800/.011 0.5232/.003 

RR7 0.12 ± 0.31 0.15 ± 0.25 0.22 ± 0.40 0.13 ± 0.24 0.11 ± 0.25 

0.3856/.001 0.3854/.001 0.3321/.002 0.3910/.001 0.5998/.001 

RR8 0.25 ± 0.30 0.25 ± 0.22 0.31 ± 0.38 0.25 ± 0.18 0.24 ± 0.18 

0.4564/.025 0.4555/.034 0.4220/.039 0.4590/.030 0.5184/.026 

Average 0.38 ± 0.24 0.39 ± 0.21 0.52 ± 0.36 0.38 ± 0.18 0.35 ± 0.18 

0.3765 0.3754 0.2870 0.3802 0.5151 

DR1 1.27 ± 0.12 1.25 ± 0.23 1.52 ± 0.33 1.26 ± 0.12 1.24 ± 0.10 

0.8625/ < .001 0.8605/ < .001 0.6957/ < .001 0.8619/ < .001 0.8694/ < .001 

DR2 3.18 ± 0.54 3.29 ± 0.53 3.64 ± 0.87 3.21 ± 0.46 3.16 ± 0.33 

0.8399/ < .001 0.8385/ < .001 0.7354/.001 0.8402/ < .001 0.8457/ < .001 

DR3 3.74 ± 0.41 3.78 ± 0.39 4.02 ± 0.84 3.78 ± 0.29 3.74 ± 0.27 

0.8345/ < .001 0.8321/ < .001 0.7289/ < .001 0.8343/ < .001 0.8541/ < .001 

DR4 3.27 ± 0.23 3.29 ± 0.22 3.99 ± 0.85 3.30 ± 0.20 3.25 ± 0.18 

0.8701/ < .001 0.8694/ < .001 0.7021/ < .001 0.8733/ < .001 0.8944/ < .001 

DR5 2.58 ± 0.34 2.57 ± 0.23 3.01 ± 0.68 2.57 ± 0.18 2.55 ± 0.17 

0.8754/ < .001 0.8715/ < .001 0.6649/ < .001 0.8768/ < .001 0.8841/ < .001 

DR6 1.73 ± 0.21 1.77 ± 0.32 2.34 ± 0.89 1.76 ± 0.18 1.73 ± 0.18 

0.8521/ < .001 0.8500/ < .001 0.7001/ < .001 0.8520/ < .001 0.8610/ < .001 

DR7 0.64 ± 0.21 0.60 ± 0.24 0.99 ± 0.55 0.61 ± 0.17 0.60 ± 0.17 

0.8433/ < .001 0.8409/ < .001 0.7118/ < .001 0.8441/ < .001 0.8498/ < .001 

DR8 0.05 ± 0.18 0.06 ± 0.06 0.18 ± 0.19 0.06 ± 0.05 0.05 ± 0.05 

0.8721/ < .001 0.8659/ < .001 0.7456/ < .001 0.8718/ < .001 0.8821/ < .001 

Average 2.05 ± 0.28 2.07 ± 0.27 2.46 ± 0.65 2.06 ± 0.20 2.04 ± 0.18 

0.8562 0.8536 0.7105 0.8568 0.8675 

Table 2 

Performance of MCL-Net with different 

datasets. 

Dataset ORIGA REFUGE 

Diameter (10 2 pixel) 

Average 0.98 ± 0.20 0.99 ± 0.22 

0.6985 0.6854 

Whole areas (10 4 pixel) 

Average 0.97 ± 0.16 1.01 ± 0.15 

0.7084 0.6825 

Regional areas (10 4 pixel) 

Average 1.19 ± 0.18 1.24 ± 0.22 

0.6913 0.6784 
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specially optic cup border. Especially, the regional areas ( Fig. 1 )

n the glaucomatous subject are often very small and easy to be

isestimated. In clinical assessment of glaucoma, there exists large

ariation of regional areas in different direction across patients,

hich often disturb accurate ONH quantification, therefore, it is

ore difficult to achieve than others. However, MCL-Net can still

btain a low average MAE of 1.19 ± 0.18 for regional areas and

.97 ± 0.16 for whole areas, as well as remain a high correlation

oefficient of 0.691 and 0.708. 

Fig. 7 shows the correlations between the computed indices

alues with the ones obtained from the manual labels. Ideally, the

istribution of indices plots as close as possible to the blue straight

ine. Despite the challenges in multi-indices ONH quantification,

he proposed MCL-Net achieves a high correlation between the
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Fig. 7. The correlations between the computed indices values with the ones obtained from the manual labels. Despite the challenges in ONH quantification, especially in rim 

region, the proposed method achieves a high correlation between the computed indices and manual ones. It should be noted that the plots in 5–12 subfigure is not good as 

the others because of the challenges in rim quantification, however, the correlations obtained by our proposed method still higher than the existing methods. 
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computed indices and manual ones. The plots shown in Fig. 7 are

distributed around the blue straight line which means the com-

puted indices by our method are highly correlated with the ground

truth. It should be noted that the plots in 5–12 subfigure is not

good as the others because of the challenges in rim quantification,

however, the correlations obtained by our proposed method still

higher than the existing methods. 

Furthermore, experimental results on glaucoma screening show

that the quantitative indices provide more effective assessment

tools (with 0.8698 AUC) for ophthalmic diseases screening. The

effectiveness of glaucoma screening benefits from comprehensive

quantification of 20 indices, which provides both the detailed and

semantic information for ONH assessment. 

5.2. Ablation study 

We conduct some ablation experiments by comparing against

the baselines to analyze the effectiveness of each components

in our MCL-Net. From the ONH quantification results shown in

Table 1 , we have the following observations: 

Effectiveness of DRF. We conduct a contrast experiment to

demonstrate the effective of our newly-designed DRF module for

multi-indices ONH quantification. In the contrast experiment, out

proposed MCL-Net under different configurations (with and with-

out DRF module) are evaluated to show the contribution of DRF

module. The third and fourth columns obviously indicate that the

DRF module improves the average 22.3% of 20 indices compared

with the baseline model without benefits of the DRF module. The

results show that the DRF module contributes to the 3 types and

20 indices ONH quantification due to its advantages of feature se-

lection and ensemble learning. 

Effectiveness of multitask ensemble. The first three columns

of Table 1 demonstrate that the multitask ensemble produces a

competitive performance (MAE = 1.13 ± 0.18), which is better than

single task solutions (MAE = 1.18 ± 0.23). Two single-task models

serve as baselines without benefits of multitask ensemble. First we

evaluate a single network trained on only one task (denoted as seg-

mentation branch and estimation branch ). The model settings are
he same as the ones described in Section.3, whereas the other

ranch, FIM and MEM are discarded. Indices shown in the first

nd second columns of Table 1 are independently obtained by the

ingle-task baselines. The results clearly indicate that multitask en-

emble improves average 0.5%, 0.8% of 20 indices compared with

he single segmentation and estimation task branch, respectively.

ompared with the single task, multitask ensemble obtains the

mallest bias overall indices and lowest average MAE overall 20 in-

ices. The average MAE and bias show multitask ensemble learning

rings clearly improvements for all the indices quantification. This

roves that multitask ensemble of segmentation and estimation

mproves the segmentation and direct estimation results, as well as

rovides the best quantification results for the multi-indices ONH

uantification. 

Effectiveness of collaborative learning. To demonstrate the

ffectiveness of our collaborative learning, the DMTFS proposed

n ( Zhao et al., 2019c ) serves as a baseline without benefits of

IM module. As shown in the last column of Table 1 , the MCL-

et with collaborative learning obtains higher scores than DMTFs

nd single task solutions with MAE of 0.88%, 1.77% and correla-

ion coefficient of 9.26%, 11.2% which demonstrates the effective-

ess of our collaborative learning on multi-indices ONH quantifi-

ation. The multitask ensemble method proposed in the previous

ork ( Zhao et al., 2019 ) provides a multi-indices quantification by

nly using multitask ensemble, which obtains MAE of 1.01 ± 0.27,

.98 ± 0.17, 1.22 ± 0.19 on ORIGA dataset. By contrast, our MCL-Net

btains the best performance of ONH quantification on all the 20

ndices, which improves the regional areas such as RR4, RR5, DR1,

R2, DR5 and DR7. It should be noticed that these results prove

he MCL potential and generalization ability. Besides, our MCL-Net

lso outperforms other single task solutions on multi-indices ONH

uantification. 

To demonstrate the effectiveness of our collaborative learning

n segmentation task, the segmentation branch without collabo-

ation is individually tested for ONH segmentation as a baseline,

hich is compared with our segmentation branch after collabora-

ion with estimation branch. Qualitative results shown in Fig. 10 il-

ustrate that the segmentation branch after collaboration achieves
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Fig. 8. Box-and-whisker demonstrates the accuracy of our proposed method for multiple ONH indices. Each whisker represents the range of ONH indices and its errors with 

all the test images, and the bottonm end of each whisker indicates the optimal performance and the horizontal red line shows the median value of the MAE. Each column 

indicates each of the ONH indices and the leaf whisker is with our MCL-Net while right one is MNet. (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.) 

Fig. 9. The ROC curves with AUC scores for glaucoma screening based on the quan- 

titative multi-types indices for our MCL-Net while only CDRs for others. Source: 

Fu et al. (2018) with our results added. 
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ore precise segmentation of ONH compared with the baseline,

enefiting from the collaborative information of estimation task

ith high-level semantics. 

Statistical significance. Statistical differences from ground

ruth is assessed using paired t -test and p -values are shown in

able 1 to demonstrate the paired t -test for our proposed MCL-Net

or 20 ONH quantitative indices. The test results reveal the extent

f difference between our MCL-Net and its different configurations,

hich indicates that the proposed MCL-Net significantly improves

he performance of multi-indices ONH quantification. 
.3. Performance comparison 

MCL-Net reveals great advantages for multi-indices ONH

uantification over existing segmentation-and-measurement 

ethod such as weakly-supervised ( Zhao et al., 2019c ),

eepLab ( Chen et al., 2018 ), spatial-aware ( Liu et al., 2019 ),

Net ( Fu et al., 2018 ) and ensemble learning based method such

s DMTFs ( Zhao et al., 2019 ), as shown in Table 3 . 

Compared results show that MCL-Net obtains the average im-

rovement of 3.5% on 20 indices, which achieves the best perfor-

ance on multi-indices ONH quantification. Furthermore, the MCL-

et significantly improves the performance of glaucoma screening

y evaluating the obtained multiple ONH indices. From the com-

ared results we have the following observations. 

(1) MCL-Net outperforms significantly the segmentation-and- 

measurement methods. Comparing the last column with

others of Table 3 , it clearly shows MCL-Net obtains

more accurate multi-indices ONH quantification than single

segmentation-and-measurement methods, which demon- 

strates the remarkable advantages in more detailed ONH

quantification. As far as we know, MNet ( Fu et al., 2018 ) and

spatial-aware joint ( Liu et al., 2019 ) achieve the best perfor-

mance of ONH segmentation based on the single task model,

while perform poorly for multi-indices ONH quantification,

especially for regional areas. Our MCL-Net outperforms those

segmentation-and-measurement methods with average MAE 

of 5.1%, 2.1% and 3.3% for diameters, regional areas and

whole areas, respectively. We can see from Table 3 that

multitask collaborative learning reduces the diversity of the

quantitative indices with 11.6%. It is easy to understand that

MCL-Net captures the detailed local and global semantic

quantitative information simultaneously to boost the quan-

tification performance. 

Fig. 8 demonstrates the performance variations of differ-

ent methods with the statistical box-and-whisker diagrams.

Each whisker represents the range of ONH indices and its
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Fig. 10. Visual examples of the segmented mask of optic disc and cup, where the last row on challenging case shows the advantages of our MCL-Net due to the collaboration 

from estimation task. From the left to right: fundus image, ground truth (GT), DeepLab, M-Net, Spatial-aware method and our MCL-Net. 

Table 3 

Compassion with state-of-the-art methods for multi-indices ONH quantification. 

Method Weakly DeepLab Spatial-aware MNet DMTFs MCL-Net 

Zhao et al. (2019c) Chen et al. (2018) Liu et al. (2019) Fu et al. (2018) Zhao et al., 2019 Proposed 

Diameter 

Dia1 – 1.12 ± 0.60 0.98 ± 0.21 0.97 ± 0.23 0.96 ± 0.21 0.94 ± 0.23 

Dia2 1.86 ± 0.68 1.75 ± 0.43 1.08 ± 0.20 1.09 ± 0.28 1.05 ± 0.19 1.03 ± 0.18 

Average 1.86 ± 0.68 1.43 ± 0.51 1.03 ± 0.20 1.03 ± 0.25 1.00 ± 0.20 0.98 ± 0.20 

Whole areas 

WR – 0.43 ± 0.23 0.32 ± 0.08 0.32 ± 0.09 0.32 ± 0.12 0.31 ± 0.08 

WD 1.82 ± 0.25 1.72 ± 0.16 1.66 ± 0.17 1.67 ± 0.16 1.65 ± 0.15 1.63 ± 0.18 

Average 1.82 ± 0.25 1.07 ± 0.19 0.99 ± 0.12 0.99 ± 0.12 0.98 ± 0.13 0.97 ± 0.13 

Regional areas 

RR1 – 0.56 ± 0.34 0.74 ± 0.23 0.74 ± 0.21 0.73 ± 0.21 0.72 ± 0.20 

RR2 – 0.55 ± 0.38 0.39 ± 0.12 0.39 ± 0.13 0.34 ± 0.10 0.31 ± 0.12 

RR3 – 0.54 ± 0.37 0.13 ± 0.08 0.11 ± 0.08 0.11 ± 0.09 0.09 ± 0.10 

RR4 – 0.53 ± 0.37 0.57 ± 0.24 0.55 ± 0.25 0.55 ± 0.29 0.52 ± 0.28 

RR5 – 0.54 ± 0.29 0.72 ± 0.30 0.70 ± 0.31 0.69 ± 0.21 0.65 ± 0.20 

RR6 – 0.55 ± 0.33 0.32 ± 0.14 0.30 ± 0.15 0.30 ± 0.13 0.27 ± 0.13 

RR7 – 0.56 ± 0.30 0.16 ± 0.23 0.15 ± 0.26 0.13 ± 0.24 0.11 ± 0.25 

RR8 – 0.56 ± 0.28 0.28 ± 0.18 0.26 ± 0.17 0.25 ± 0.18 0.24 ± 0.18 

Average – 0.54 ± 0.33 0.41 ± 0.19 0.40 ± 0.19 0.38 ± 0.18 0.35 ± 0.18 

DR1 1.61 ± 0.64 1.44 ± 0.56 1.26 ± 0.13 1.28 ± 0.19 1.26 ± 0.12 1.24 ± 0.10 

DR2 3.48 ± 0.66 3.47 ± 0.64 3.15 ± 0.48 3.17 ± 0.54 3.21 ± 0.46 3.16 ± 0.33 

DR3 3.54 ± 0.69 3.45 ± 0.65 3.78 ± 0.36 3.80 ± 0.38 3.78 ± 0.29 3.74 ± 0.27 

DR4 3.44 ± 0.58 3.39 ± 0.61 3.31 ± 0.30 3.32 ± 0.36 3.30 ± 0.20 3.25 ± 0.18 

DR5 2.59 ± 0.54 2.41 ± 0.52 2.54 ± 0.28 2.55 ± 0.31 2.57 ± 0.18 2.55 ± 0.17 

DR6 1.79 ± 0.41 1.49 ± 0.54 1.76 ± 0.25 1.77 ± 0.29 1.76 ± 0.18 1.73 ± 0.18 

DR7 0.96 ± 0.25 0.94 ± 0.19 0.66 ± 0.23 0.66 ± 0.24 0.61 ± 0.17 0.60 ± 0.17 

DR8 0.19 ± 0.11 0.89 ± 0.21 0.08 ± 0.06 0.09 ± 0.08 0.06 ± 0.05 0.05 ± 0.05 

Average 2.20 ± 0.48 2.18 ± 0.49 2.06 ± 0.26 2.08 ± 0.29 2.06 ± 0.20 2.04 ± 0.18 

 

 

 

 

 

 

 

 

 

 

 

errors with all the test images, the bottom end of each

whisker represents the optimal performance and the hori-

zontal red line shows the median value of the performance.

From the plots we can see that the variety of the whisker’s

bottom ends are obvious high with the MCL-Net, and all the

ranges of our whisker is smaller than others. 
 

(2) MCL-Net outperforms the best of existing multitask ensem-

ble method. Contrast to the existing multitask ensemble

method (DMTFs) ( Zhao et al., 2019 ) that integrate segmen-

tation and estimation tasks into a unified framework, our

MCL-Net leverages the merit of spatial and semantic depen-

dencies between OD segmentation and indices estimation by

collaborative learning, which brings obvious improvement of
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quantification performance with 3.06%, 1.03% and 8.57% for

diameters, regional areas and whole areas, respectively. 

(3) MCL-Net even helps improve the performance of glaucoma

screening. Fig. 9 shows the success of the proposed MCL-

Net on glaucoma screening based on the quantitative 20 in-

dices. Evidenced by ROC curves and AUC value (0.8698), the

glaucoma screening results indicate that our multi-indices

ONH quantification achieves a competitive performance us-

ing the 20 quantitative indices compared with the other

methods only using the CDR value. Firstly, the multitask en-

semble method obtains higher AUC scores than the one of

MNet ( Fu et al., 2018 ), which indicates the accurate quanti-

tative indices improve the performance of glaucoma screen-

ing. Secondly, our MCL-Net achieves the best performance

of glaucoma screening based on the multiple ONH indices.

Those demonstrate that contrasted with the classical CDR

values, multi-indices ONH quantification provides a more ef-

fective assessment of glaucomatous changes of ONH, which

significantly improves clinical glaucoma diagnosis. 

(4) MCL-Net helps improve the performance of ONH segmen-

tation. To demonstrate the superiority of the proposed al-

gorithm on ONH segmentation, visual examples of the seg-

mented mask of optic disc and cup from our segmenta-

tion branch and other methods are shown in Fig. 10 , where

the first two rows are normal eyes and the rest rows are

glaucoma cases, and the first two columns are the original

fundus images and its manual ground truth. The last row

in Fig. 10 is a challenging case with blurred and glaucoma-

tous fundus, which is hard to find the precise OD/OC bound-

ary. From the visual comparison we can see, our method ad-

dresses this case more accurate than other methods based

on the collaboration of the high-level ONH indices from es-

timation branch. 

. Conclusion 

In this work, we proposed a novel multitask collaborative

earning (MCL-Net) for multi-indices ONH quantification. MCL-Net

chieves multi-indices ONH quantification by leveraging the merit

f spatial and context dependencies from ONH segmentation and

ndices estimation tasks collaboratively. It is the first time that

he dependencies between two task-specific branches are investi-

ated to obtain accurate multi-indices quantification by collabora-

ive learning. Benefit from the consensus of multiple views, MCL-

et provides supplementary information and regularization to each

ther to promote accurate multi-indices ONH quantification. Ex-

erimental results on 650 fundus images show that MCL-Net not

nly achieves accurate multi-indices ONH quantification, but also

btains high AUC when the quantitative indices be used to glau-

oma diagnosis. It reveals the great potential of focal and regional

NH assessment in clinical practice. 
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