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Retinal image registration is clinically significant to help clinicians obtain more complete details of the
retinal structure by correlating the properties of the retina. However, existing methods suffer from great
challenges due to time-consuming optimization and lack of ground truth. In this paper, we propose an
unsupervised learning framework for non-rigid retinal image registration, which directly learns the map-
ping from a retinal image pair to their corresponding deformation field without any supervision such as
ground truth registration fields. Specifically, we formulate the complex mapping as a parameterized
deformation function, which can be represented and optimized by a deep neural network.
Furthermore, the Structure-Driven Regression Network (SDRN) framework is applied to compute the
multi-scale similarity combined with contextual structures (e.g., vessel distribution, optic disk appear-
ance, and edge information) to guide the end-to-end learning procedure more effectively with unlabeled
data. Given a new pair of images, our method can quickly register images by directly evaluating the para-
metric function using the learned parameters, which runs faster than traditional registration algorithms.
Experimental results, performed on the public challenging dataset (FIRE), show that our method achieves
an average Dice similarity coefficient (DSC) of 0.753 with short execution times (0.021 s), which is more
accurate and robust than existing approaches and promises to significantly speed up retinal image anal-
ysis and processing.

� 2020 Elsevier B.V. All rights reserved.
1. Introduction

Retinal image registration is a clinically significant fundamental
task in medical image analysis since it provides more complete
details to assess and evaluate the development of eye-related dis-
eases in clinical practice. By correlating and comparing details in
retinal images taken at different time periods, clinicians can eval-
uate the progress of diseases and decide on the appropriate treat-
ments to be taken. In the clinical procedure, retinal image
registration contributes to diagnose, monitor and track many ocu-
lar pathologies including age-related macular degeneration
(ARMD), diabetic retinopathy (DR), glaucoma and vasculitis. It
can establish the anatomical correspondences between a pair of
images, and thus ensures image data comparability to facilitate
the subsequent analysis such as longitudinal studies [1]. Therefore,
automated retinal image registration is required by clinical prac-
tice and has been a topic of active research [2–4]. Several image
registration toolkits have been developed such as ITK [5], Elastix
[6] and so on.

Although many studies are devoted to retinal image registra-
tion, nowadays, it is still a challenging task due to time-
consuming optimization and lack of ground truth which obstructs
clinical practice. Existing deformable registration methods [7–9]
for retinal images suffer from the following aspects: (1) vascular
structures of the retinal image are very complicated due to inten-
sity variations and changed structures, which makes it difficult to
align vasculature; (2) traditional deformable registration methods
iteratively optimize the cost function, which limits the speed of
registration; (3) collecting large-scale accurate pixel-level annota-
tion for registration is time-consuming and challenging. All of
these factors act as obstacles to the application in clinical practice.

In this paper, we present an unsupervised retinal image regis-
tration method that learns the non-linear spatial correspondence
without any supervised information. We mainly focus on content
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changes (e.g., local deformations of blood vessels) in image regis-
tration which are often non-rigid transformation. The proposed
method formulates retinal image registration as a parameterized
deformation function, which directly models the complex mapping
from an image pair to their corresponding deformation field. The
parameters of the deformation function are learned by a regression
model, named as Structure-Driven Regression Network (SDRN).
Specifically, the parameters of our SDRN (i.e., the convolutional
kernel weights) are optimized by adopting the multi-scale defor-
mation fields and structure-driven strategies, which participate
in the computation of the loss function. By training a set of image
pairs from the dataset of interest, the procedure learns a common
representation that can align any new pair of images from the
same distribution. Registration between a new test image pair is
achieved by simply evaluating the learned function, resulting in
faster registration speed than traditional registration methods.
Throughout this paper, we use the example of registering retinal
images. However, our method is broadly applicable to other med-
ical image registration. Results show that the proposed method
performs accurate retinal image registration with short execution
times, which is more robust and accurate than existing excellent
approaches. Images can now be registered under a second with a
GPU. The contributions of our work are threefold:

� an unsupervised learning framework is proposed to directly
regress the non-linear spatial correspondence between the reti-
nal image pair without any supervision during training;

� a novel structure-driven regression network, trained with
multi-scale deformation fields strategy, is proposed to facilitate
robust and accurate learning;

� the proposed method achieves the best registration perfor-
mance compared with state-of-the-art algorithms.

2. Related works

Comprehensive overviews of registration methods and the most
recent advances in this domain can be found in [10–12]. In the fol-
lowing two subsections, the most important classes of existing reg-
istration method that we categorize are presented: (1) traditional
registration methods and (2) learning-based registration methods.
More recently, learning-based registration methods have been
widely investigated to improve registration performance. There-
fore, they become prevalent.

2.1. Traditional registration methods

The optimization based registration methods can be classified
into two categories [13]: intensity-based [14,15] and feature-
based [16–18]. These registration algorithms are often based on
linear transformations like rigid and affine which intend to globally
align the two images. They are designed to deal with changes of
content appearance (e.g., due to different sensors imaging the same
organs) whereas the deformable image registration (DIR) is used to
generate the local deformations between two images. Recently,
DIR is widely used in many medical image analysis and applica-
tions to deal with content changes. It has great potential to estab-
lish non-linear spatial correspondences between retinal images
due to its efficiency to find out a non-rigid transformation. Several
works are devoted to develop effective DIR algorithms for retinal
image registration [7–9].

Most conventional deformable registration methods regard the
registration process as a high-dimensional optimization problem.
They iteratively optimize a transformation based on a cost
function:b/ ¼ argmin

/
Lsim If ; Im /ð Þ� �þ kLsmooth /ð Þ ð1Þ
where If ; Im denote the fixed and moving images, respectively, the
deformation field / can be obtained by minimizing function Lsim
measuring similarity between If and warped moving image Im /ð Þ,
with regularization Lsmooth imposes on /, and k is the regularization
parameter.

There are common similarity metrics and regularization terms
have been proposed to solve the optimization problem in Eq. (1).
Often, / is a displacement vector field. Commonly adopted similar-
ity metrics include the mean squared difference (MSD) [19],
mutual information (MI) [20], and normalized cross correlation
(NCC) [1,21,22]. A regularization term is often required to mini-
mize the bending energy and smooth deformation [23,24]. For each
pair of images, traditional registration methods iteratively opti-
mize the cost function, which neglects the inherent registration
patterns shared across images from the same distribution. There-
fore, these algorithms often require task-sensitive parameter tun-
ing and time-consuming iterative optimization which is
computationally intensive.

2.2. Learning-based registration methods

For learning-based registration methods, the correlation
between the deformation field and images can be learned by
machine learning techniques [25–27]. Kim et al. [25] train a defor-
mation–appearance model through support vector regression
(SVR) to bridge the intrinsic statistics of deformation fields and
image appearances. Gutierrez et al. [27] propose to estimate defor-
mation parameters via a supervised regression model using
gradient-based optimization, instead of directly minimizing regis-
tration energy. These methods have demonstrated improved regis-
tration performances. But it cannot be ignored that this type of
registration method is data-driven typically, which often requires
large-scale pixel-level labels. However, large-scale pixel-level
labels are difficult to collect.

Recently, deep neural network based methods are considered as
novel solutions to medical image registration. Although the spatial
transformer network (STN) proposed by Jaderberg et al. [28] is
designed as a part classification task, whereas image alignment is
not guaranteed, it is one of the first approaches that exploit CNN
for image registration. STN gives neural networks the ability to
actively spatially transform feature maps. STN is a differentiable
module that can be inserted into existing CNNs architectures, mak-
ing it possible to be applied to image registration. Recent papers
[22,29–31] employ it to warp one image to another, enabling
end-to-end training. Most deep learning-based methods [32–35]
show accurate registration performance, but they are supervised.
Miao et al. [32] use convolutional neural network regressors to
directly predict the transformation parameters. Liao et al. [33]
use an artificial agent and deep convolutional neural networks
for iterative registration. Cao et al. [34] use a similarity-steered
CNN model to predict the deformation fields even with small data-
sets. Mahapatra et al. [35] use generative adversarial networks
(GANs) for deformable registration of retinal and cardiac MR
images. Training examples are generated by synthetic data [32]
or obtained by conventional registration methods [33–35], which
is problem specific. Due to the limitations of supervised methods,
a number of weakly-supervised methods consider extra informa-
tion such as segmentations or weak labels during training
[30,36]. Hu et al. [30] present a weakly-supervised method that
learns to align segment labels. The authors demonstrate that a loss
function based solely on segmentation labels can effectively train a
cross-modality registration network. Lee et al. [36] introduce a
generic framework, Image-and-Spatial Transformer Networks
(ISTNs), aiming to extract and retain information about
Structures-of-Interest (SoI) for structure-guided image registra-
tion. However, high-quality segmentation labels are quite difficult



16 B. Zou et al. / Neurocomputing 404 (2020) 14–25
to obtain. Alternatively, unsupervised deep learning methods have
been applied to image registration [37,29,38–40]. Wu et al. [37]
use a convolutional stacked auto-encoder (CAE) to learn the trans-
lational invariant feature representations between fixed and mov-
ing images, and use it in a conventional deformable registration
framework. However, The CAE is separate from image registration
tasks. So it does not necessarily extract the most descriptive fea-
tures for image registration. Vos et al. [29] propose a deformable
image registration network (DIRNet) which learns the mapping
of input image pairs and displacement vector field by an unsuper-
vised convolutional neural network. DIRNet has the advantages of
non-iteratively outputting transformed image and training com-
pletely unsupervised. Unfortunately, directly optimizing a similar-
ity metric between input image pairs cannot guarantee robustness
and accuracy. Specifically, differences of image pairs may appear in
the form of increased vessel tortuosity, microaneurysms, cotton-
wool and spots. Furthermore, DIRNet has no regularization terms,
so it cannot penalize undesired deformations. To address this prob-
lem, some registration methods [22,30,40] apply smoothing on
deformation fields. Few recent approaches build unsupervised
models to learn diffeomorphic representations [39–41]. For exam-
ple, Dalca et al. [39] propose an unsupervised probabilistic gener-
ative model for diffeomorphic image registration that can offer
uncertainty estimates. The proposed probabilistic framework can
extend to anatomical surface alignment, which enables training
the network using segmentation labels. To achieve accurate regis-
tration results, multi-scale approaches are employed. Vos et al.
[38] present the Deep Learning Image Registration (DLIR) frame-
work for unsupervised training of multi-stage ConvNets for hierar-
chical multi-resolution and multi-scale image registration, each
ConvNet with a different B-spline grid spacing and images of dif-
ferent resolution as inputs, and Krebs et al. [40] propose an unsu-
pervised multi-scale deformable registration approach, providing
multi-scale estimations of velocities, deformation fields and
warped images, leads to a more controlled training procedure com-
pared to a single-scale approach.
3. Methodology

Taking a pair of fixed image If and moving image Im as input, the
proposed registration method directly models the mappingM from
an image pair to the dense deformation field (DDF) /. The DDF
encodes displacement vectors between spatial coordinates of If
and their counterparts in Im. Specifically, our method is designed
to formulate the complex mapping as a parameterized deformation
function M If ; Im; h

� � ¼ /. Then we model the deformation function
M using deep regression network (DRN), where the parameters
hare the learnable parameters of M. Therefore, the image registra-
tion is transformed as a problem to find the optimized parameters
of the deformation function as

bh ¼ argmin
h

L Vf ;Vm;M If ; Im; h
� �� � ð2Þ

where bh is the learned parameters optimized by stochastic gradient
descent. In order to bridge the large intensity variations and chan-
ged structure, we introduce the auxiliary images to facilitate robust
local alignment learning in a structure-driven way, Vf and Vm in Eq.
(2), which are vessel enhancement images generated by the
enhancement algorithm [42] from the input image pair.

Our learning framework consists of three distinguishing parts:
(1) a deep regression network for multi-scale DDF generation; (2)
a spatial transformation function for warping images with the gen-
erated deformation fields; (3) a structure-driven loss function for
optimizing the parameters of SDRN. As shown in Fig. 1, the learn-
ing framework takes If and Im as input and estimates /. Then we
warp Vm to Vm /ð Þ using a spatial transformation function based
on [28], which contributes to evaluating the similarity of Vf and
Vm /ð Þ. Note that the similarity adopted by our method is NCC that
is a widely-used similarity measure in a large number of registra-
tion methods [1,21,22]. Finally, the optimal parameters are
founded by minimizing Eq. (2), similar to Eq. (1). During the testing
phase, the deformation field and warped image of an unseen image
pair can be obtained by directly evaluating function M. It is recom-
mended to use a high dimensional scale deformation field to gen-
erate the warped image.
3.1. Deep regression network

DRN is a non-linear regressor to directly estimate the corre-
sponding displacement vectors in DDF from input image pairs.
We adopt a deep convolutional neural network to model the
complex mapping of the deformation function, then train the net-
work to optimize the parameters of the deformation function.
Given a new pair of retinal images, DRN directly predicts the cor-
responding deformation field using the learned parameters in the
test stage.

The parametrized deformation function M is based on a DRN
inspired by VGG16 [43]. As shown in Fig. 2, the network takes
the concatenation of the fixed image If and moving image Im as
input and aims to generate deformation fields /. In our experi-
ments, the input size is 256� 256� 2. We apply a stack of convo-
lutional layers with a small receptive field of 3� 3 and stride 1. The
stack of convolutional layers captures hierarchical features of the
input image pairs which are necessary and close related to the cor-
responding deformation fields. Then ReLU activations and spatial
pooling are followed after each convolutional layer. ReLU activa-
tions can enhance the nonlinearity and modeling capability. In
pooling layers, we adopt max-pooling to obtain translation-
invariant features and increase reception fields, as well as to
reduce the number of parameters. Max-pooling is performed over
a 2� 2 pixel window, with stride 2 specifically. Finally, the feature
maps, outputs of the last three pooling layers, execute 3� 3 same
convolutions with stride 1 to generate multi-scale deformation
fields in registration layers. The number of kernels of these convo-
lutions is determined by the dimensionality of the input images.
For example, 2D images require 2 kernels for 2D displacement.

In our model, we propose a multi-scale deformation fields strat-
egy to learn the robust and accurate deformation function at differ-
ent scales. These deformation fields obtained from the DRN encode
spatially varying deformations at three scale levels, and they
enable the spatial function introduced in the next sections to gen-
erate warped images for computing image similarity from three
branches in Eq. (9). This image registration strategy makes DRN
have the capability of deep supervision without ground truth
deformation fields or landmarks. Therefore, our method can per-
form complex registration tasks in a scale-adaptive manner, fur-
ther improving the precision of registration results working on
multiple levels of detail, which is demonstrated in Table 1. It is
worth noting that the process of image registration is still unsuper-
vised. Specifically, the multi-scale deformation fields strategy is
only used for driving training. In our experiments, we set up
three-scale deformation fields with sizes of 8� 8� 2;16� 16� 2
and 32� 32� 2, respectively. The size of the deformation field rep-
resents the spacing of the control point grid, as shown in Fig. 2.
3.2. Spatial transformation function

The spatial transformation function consists of a grid generator
and a sampler. It is constructed to compute Vtrans by warping Vm

since a similarity metric between Vtrans and Vf is required when



Fig. 1. Overview of the learning framework. The DRN takes a pair of fixed and moving images as input, and directly regresses the corresponding deformation fields at multiple
scales. The spatial transformation function computes multiple warped images that enable the model from different scales to evaluate the image similarity. The parameters of
the SDRN are optimized by a well-designed loss function taking into account the global similarity and local structure context.

Fig. 2. Architecture details of DRN. The network analyzes pairs of fixed and moving images in concatenating pipelines and outputs a deformation field for each scale. The
parameters of registration layers are denoted as ‘‘Convhreceptive field sizei-h number of filtersi.”.
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Table 1
Registration results using different settings of deformation fields. In our method, the
setting of three scales is adopted.

Settings DSC PA

Single scale 0.724 0.719
Two scales 0.752 0.748
Three scales 0.753 0.750
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the network exploits standard gradient-based methods to learning
the optimal parameters of DRN. Details can be seen in Fig. 3.

The deformation field estimated by DRN is used to transform
the regular spatial grid G into a sampling grid Dh Gð Þ. And for that,
the deformation field Dh should be interpolated to the same size
as the input feature map (i.e., the same size as the fixed or moving
image) via bicubic interpolation for pixel level calculation. The
pointwise transformation is

xsi
ysi

� �
¼ Dh Gið Þ ¼ h1i

h2i

 !
þ xri

yri

� �
ð3Þ

where xri ; y
r
i

� �
are the coordinates of G; xsi ; y

s
i

� �
are the coordinates of

Dh Gð Þ, and h1i ; h
2
i

� �T
is the displacement vector in Dh.

Then, the enhanced moving image Vm 2 RH�W�C with height H,
width W, and C channels and Dh Gð Þ are taken as inputs to the sam-
pler to produce Vtrans at the grid points. Bilinear interpolation is
adopted during the sampling. Each xsi ; y

s
i

� �
coordinates in Dh Gð Þ

defines the spatial location where a sampling kernel is applied to
get the value at a particular pixel in Vtrans. This can be written as

Vc
trans ið Þ ¼

XH
x

XW
y

Vc
m x; yð Þk xsi ; y

s
i ; x; y; d

� � ð4Þ

we use a bilinear sampling kernel k in our method, giving

k ¼ max 0;1� xsi � x
�� ��� �

max 0;1� ysi � y
�� ��� � ð5Þ

where i is the location of a pixel in Vtrans, and c is the channel. Note
that every channel is transformed in an identical way. Because the
operations are differentiable, the DRN is able to be trained end-to-
end.

3.3. Loss function

In order to model the complex mapping from image pairs to
corresponding DDFs more robustly and accurately, we introduce
a structure-driven strategy to assist DRN to keep aware of struc-
ture matching. This strategy uses the enhanced input image pair,
Fig. 3. The working principle of the
which encodes definitive local edges and context of the retinal
structure, to build our novel loss function, further driving robust
DRN training. Whereas, each pair of fixed and moving images are
used only as input to DRN to learn informative image feature rep-
resentations and deformation field between images without
directly contributing to the loss function. The training process is
unsupervised because it does not rely on external registration
labels. This way, accurate and robust image alignment is ensured.

Instead, we assume that the loss function directly computed
based on the similarity measures between the fixed and warped
moving images. In fact, several CNN-based deformable registration
methods do likewise recently [22,29]. The registration results will
not perform well due to illumination, grayscale and texture
changes. As a result, the deformation fields learned are often inac-
curate, and the registered images are distorted. This assumption is
confirmed in Section 5.2. To summarize, the structure-driven strat-
egy provides local information to help structural alignment. As the
optimization of the loss function proceeds, the parameters of DRN
will be updated effectively. In this way, the registration results are
more accurate and robust.

The loss function consists of two parts. The one part denoted as
Lsim penalizes differences between the enhanced fixed image and
the warped image generated by applying a deformation field to
the enhanced moving image. Another part denoted as Lsmooth is a
regularization term that is calculated by enforcing smoothness
constraints on the deformation field.

Let /l;/m, and /h denote low, medium, and high scale deforma-
tions fields, respectively. We set Lsim to the negative NCC for back-
propagating dissimilarity. NCC between Vf and warped Vm is
formulated as

NCC /;Vf ;Vm
� � ¼

P
x2XVf

Vf xð Þ � Vf

� �
Vm / � xð Þ � Vm
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
x2XVf

V f xð Þ � Vf
� �2 X

x2XVf

Vm / � xð Þ � Vm
� �2s ð6Þ

Vf and Vm are defined as Eq. (7) and Eq. (8)

Vf ¼ 1

XVf

��� ���
X
x2XVf

V f xð Þ ð7Þ
Vm ¼ 1

XVf

��� ���
X
x2XVf

Vm / � xð Þ ð8Þ

where / is a deformation field, x is spatial coordinates of a pixel in

Vf ;XVf
is the domain of Vf ; XVf

��� ��� is the number of pixels, and / � x is
spatial transformation function.
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deformed spatial coordinates of a pixel by / in Vm. Through the
above analysis, we can easily get the formula of Lsim. It is given by

Lsim ¼ �alNCC /l;Vf ;Vm
� �� amNCC /m;Vf ;Vm

� �
� ahNCC /h;Vf ;Vm

� � ð9Þ

where al;am, and ah are the parameters that control the weights at
different scales.

A regularization term Lsmooth is needed to encourage smooth
deformation fields. The deformation fields are regularized by
square L2-norm of their spatial gradients. As shown in Eq. (10).

Lsmooth ¼ blLgrad /lð Þ þ bmLgrad /mð Þ þ bhLgrad /hð Þ ð10Þ
with

Lgrad /ð Þ ¼
X
x2X

r/ xð Þk k22 ð11Þ

where / is a deformation field, x is spatial coordinates of a pixel of
/, and X is the domain of /. bl; bm, and bh are regularization
parameters.

To summarize, the total loss function is L ¼ Lsim þ Lsmooth.
4. Experimental setup

We evaluate the effectiveness of SDRN on the task of fundus
image registration. Detailed data description and experimental
set up are provided as follows.

4.1. Dataset

We perform experiments on the publicly available Fundus
Image Registration (FIRE) dataset [44] to validate the effectiveness
of our method. The dataset consists of 129 retinal images forming
134 image pairs with a resolution of 2912� 2912 pixels. These
image pairs are classified into three different categories according
to their characteristics. Category P contains 49 image pairs with
such small overlaps that the data cannot be guaranteed to be affi-
nely aligned. Therefore, this category is not suitable for deformable
registration to evaluate our proposed algorithm. In our experiment,
we choose category S with 71 image pairs and category A with 14
image pairs as our experimental dataset. It contains 85 image pairs
and is divided into 59 training image pairs and 26 test image pairs.
We augment the training images to a total of 10030 image pairs by
rigid, affine and elastic transformations. Note that the fundus
images are resampled to 256� 256 and converted to grayscale.
We exploit the vessel enhancement method [42] to enhance vascu-
lar structures using 2D multiscale enhancement filters. We explain
that we do not use supervised information such as ground truth
deformation fields or landmarks.

4.2. Evaluation metrics

It is not well-defined to obtain ground truth deformation fields
because many deformation fields can generate similar looking
deformed images. Hence, we evaluate SDRN using vascular struc-
tures segmentations. We extract the retinal blood vessels based
on line operators [45]. As in the previous method, we use the fol-
lowing evaluation metrics for our experimental dataset to evaluate
the performance of our method.

Pixel Accuracy (PA) Pixel accuracy is a simple metric that mea-
sures the ratio of the same pixels in both segmentation masks.
Here, we adopt PA to measure the performance of registration
algorithms by judging the alignment of the segmented retinal ves-
sels since it will gain a higher value when the retinal vessels are
well aligned. PA is equal to the number of identical pixels in the
two anatomical segmentation images divided by the total number
of pixels.

PA ¼

Xk
i¼0

pii

Xk
i¼0

Xk
j¼0

pij

ð12Þ

where pii represents the number of true positives, whereas pij and pji

are usually interpreted as false positives and false negatives
respectively.

Dice Similarity Coefficient (DSC) Dice similarity coefficient [46]
measures the overlap between vasculature segmentations. If a reg-
istration field represents accurate anatomical correspondences, we
expect the regions in the fixed image and deformed moving image
corresponding to the same anatomical structure. The DSC of the
two segmentation masks is defined as

DSC Sf ; Strans
� � ¼ 2� Sf \ Strans

�� ��
Sf
�� ��þ Stransj j ð13Þ

where Sf is the vessel segmentation of the fixed image and Strans is
the vessel segmentation of the deformed moving image. The higher
DSC value indicates a better registration result.

Root Mean Square Error (RMSE) For landmarks, the registration
error is determined as RMSE between points in the deformed
image and its corresponding points in the fixed image.

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

xi � x0i
� �2 þ yi � y0i

� �2h i
N

vuuuut ð14Þ

where N is the number of corresponding points, xi; yið Þ is a point of
the fixed image and x0i; y

0
i

� �
on the deformed image.

4.3. Implementation details

Our network is implemented with Tensorflow [47]. We choose
the Adam [48] optimizer with b1 ¼ 0:9 and b2 ¼ 0:999. We set a
large learning rate to 10�1 for the initial training stage to acquire
a high convergence speed with a batch size of 5 pairs of retinal
images. The parameters introduced in Section 3.3 are set to
al ¼ bl ¼ 0:3;am ¼ bm ¼ 0:6 and ah ¼ bh ¼ 0:9. The registration
performance is not very sensitive to parameter tuning. Our SDRN
and DIRNet are conducted on a Nvidia GeForce GTX 1080 Ti GPU.
We select conventional iterative registrations (SimpleITK [49]
and SimpleElastix [50]) for comparison. Experiments are imple-
mented in Python and performed with an Intel Xeon E5-2683 v3
2.00 GHz CPU.

5. Results

We conduct several ablation studies to investigate the effective-
ness of our SDRN. In addition, several state-of-the-art registration
tools and frameworks are adopted as the baselines of our work
to compare with each other. Ablation studies and comparison
experiments indicate that our SDRN can achieve an accurate result
with short execution times.

5.1. Evaluation for the contribution of the multi-scale deformation
fields strategy

In this section, we investigate the influence of the multi-scale
strategy on retinal image registration. For this purpose, we set up
an ablation experiment that we fix this model and evaluate the
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registration performance by using deformation fields with three
different settings. As shown in Table 1, without using this strategy,
the registration performance drops on average. Notably, the best
performance is achieved using our proposed way three-scale defor-
mation field. DSC and PA increase by approximately 4% in a three-
scale way compared to the single-scale way. Registration speeds
for all these settings are approximately 0.021 s. Furthermore, we
can observe these changes in the registration performance of each
image pair in Fig. 4. Over half of the test data achieves the highest
values. The result demonstrates that this strategy can optimize the
network using deep supervision, thus further improving the per-
formance via working on multiple levels of detail. The reason can
be explained by the fact that the size of the deformation field rep-
resents the spacing of the control point grid, as we mentioned
before. Thus, the lower dimension of the deformation field is able
to capture the larger deformations between the image pairs glob-
ally. In contrast, the higher dimension of the deformation field
can restore smaller deformations locally.

5.2. Evaluation for the contribution of the structure-driven strategy

To validate the effectiveness of the structure-driven strategy,
we set up an ablation experiment that uses the input images, a pair
of fixed and moving images, to directly compute the loss function
instead of using the auxiliary images, which has been discussed
before in Section 3.3. The effect can be visually appreciated in
Fig. 5. As red arrows point out, Fig. 5(c) is distorted in the area
where anatomical differences and grayscale change exist in the test
image pairs. Whereas Fig. 5(d) still maintains good performance
since we use the retinal vasculature structure, which is often con-
sidered to be the representative and robust feature, to solve the
problem of lack of robustness during the training stage. That is,
our method still accurately predicts the deformation field, when
there exist differences in the image pairs such as increased vessel
tortuosity and grayscale. The comparable evaluations for each test
sample are shown in Fig. 6. Evaluations of almost all image pairs
Fig. 4. DSC and PA using different settings of deformation fields. ‘‘*” means
are significantly improved by our proposed method. Obviously,
the proposed strategy significantly improves the precision and
robustness of registration. This demonstrates that the trained
SDRN is accurate and the proposed registration method is well
applicable. This strategy is useful for helping structure alignment
and solving the problem of lack of robust similarity metrics for
images.
5.3. Comparing with state-of-the-art

We compare our approach with the popular registration toolk-
its using SimpleITK [49] and SimpleElastix [50] with manually
tuned parameters. SimpleITK is an easy-to-use interface to the
ITK, intended to facilitate its use in rapid prototyping, education,
and scientific activities via high-level programming languages like
Python, etc. SimpleElastix brings Elastix multiple programming
languages allow users to call Elastix. To compare with recent
CNN-based registration approaches, we also test DIRNet the first
unsupervised end-to-end method [29], VoxelMorph a state-of-
the-art fast and accurate registration method [31] and a weakly-
supervised method [30]. We apply a small learning rate of 10�4

for all learning-based methods while using more training epochs.
For [30,31], we sweep the regularization parameters and set them
to 0.5.

Table 2 shows the comparative evaluations of the previously
discussed algorithms. Our proposed method achieves the highest
DSC 0.753 and PA 0.750. At the same time, RMSE is significantly
improved using our algorithm. It is worth noting that there are
many anatomical differences in our experimental dataset, as
shown in Fig. 7. As a result, features that are visible in one image,
may be occluded in the other, leading to inaccurate registration
results. It indicates that our method not only improves the regis-
tration accuracy, but also is robust to anatomical differences that
may appear in the form of increased vessel tortuosity, microa-
neurysms, cotton-wool, spots, etc. We can also observe that, in
the cases where the setting of three scales achieves the highest values.



Fig. 5. Example results of the ablation experiment. (a) A fixed image, (b) a moving image. Registered images (i.e. warped images) of (c) SDRN-C and (d) SDRN. (e), (f)
respectively denote the registration accuracy test results using SDRN-C and SDRN.

Fig. 6. DSC and PA for each pair of test images from FIRE after performing the deformable registration by SDRN-C (a controlled experiment for SDRN without structure-driven
strategy) and SDRN.
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the test stage, CNN-based methods can register an unseen image
pair within 1 s with a GPU, which indicates our method and other
deep learning-based methods effectively solve the problem of the
traditional deformation registration methods with time-
consuming iterative optimization. CNN-based methods using GPUs
have been becoming more common for improving computational
efficiency. We visualize deformation fields for each method using
deformed images with a deformation grid in Fig. 8. Compared to
the other algorithms, our approach produces smoother and more
regular deformations. As discussed before, the deformation field
generated by DIRNet has many undesired deformations because
DIRNet does not smooth it. Generally, conventional algorithms
produce more irregular deformation fields compared to CNN-
based algorithms. To illustrate the effectiveness of the proposed



Table 2
Comparative average performance of different methods. Time denotes average run time in seconds taken to register an image pair.

Method DSC PA RMSE Time(s)

Before registration 0.437 0.438 4.174 n
SimpleITK(Demons) [49] 0.446 0.441 3.867 30.685
SimpleITK(BSplines) [49] 0.526 0.522 2.362 14.451
SimpleElastix [50] 0.599 0.594 2.302 71.005
Vos et al., 2017 [29] 0.575 0.567 2.808 0.006
Balakrishnan et al., 2019 [31] 0.747 0.732 1.540 0.004
Hu et al., 2018 [30] 0.745 0.735 1.355 0.011
Our method 0.753 0.750 0.915 0.021

Fig. 7. Examples of input image pairs with corresponding points.

Fig. 8. Examples of deformed images with a deformation grid. (a) SimpleITK(Demons), (b) SimpleITK(BSplines), (c) SimpleElastix, (d) Vos et al. [29], (e) Balakrishnan et al.
[31], (f) Hu et al. [30], (g) our method.
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method, we also provide visual inspection in Fig. 9. From the over-
lapped images and combinations of structures using different
methods, we can see that our method is able to generate the most
realistic deformations among comparison algorithms. In particular,
our method also aligns tiny blood vessels better than [30,31]. In
summary, the statistical result demonstrates that the results of
our method outperform traditional methods and other CNN-
based methods.



Fig. 9. Examples of registration results for fundus images. Visual comparisons can be illustrated from checkerboards of the same region and combinations of retinal
vasculature structure by different methods after registration.
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6. Conclusion

In this paper, we have proposed a convolutional neural network
algorithm for end-to-end deformable registration in an unsuper-
vised manner. The proposed SDRN directly learns the mapping
from an image pair to the corresponding deformation field. This
complex mapping is modeled by combining the novel multi-scale
deformation fields and structure-driven strategies to effectively
guide the training stage, which significantly improves the registra-
tion precision and robustness. Given an unseen pair of images, the
method can perform registration quickly within one second. Exper-
imental results demonstrate that the proposed method performs
better than traditional iterative registration methods and CNN-
based methods. Investigating the generalization of the proposed
method to 3D images and a wider range of applications would be
an important future research direction.
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